# Quantitative Epistemology: Conceiving a new human-machine partnership

#### Mihaela van der Schaar

John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine, University of Cambridge



vanderschaar-lab.com





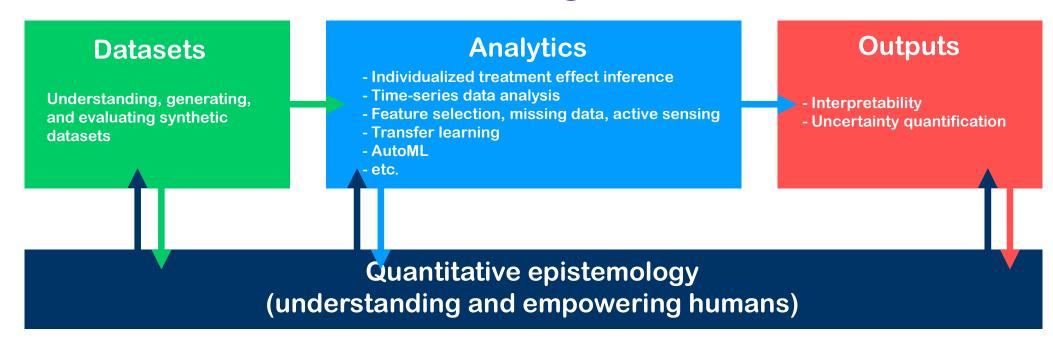


mv472@cam.ac.uk

linkedin.com/in/mihaela-van-der-schaar/



## Our group's research agenda: New ML aimed at revolutionizing healthcare







## **Explaining the name...**

# Quantitative epistemology

Refers to things that can be measured

The study of knowledge





#### Inverse decision modeling (understanding humans)



- Understanding, explaining & auditing decisions
- Giving quantitative accounts of past behavior
- Identifying "suboptimal" behavior
- Analyzing variation in practice
- Improving policies

#### Conventional decision-making analysis (replacing humans/guiding humans)

- **Optimal control**
- Reinforcement learning
- Apprenticeship learning
- **Imitating behavior**

## **Quantitative Epistemology** (partnering with & empowering humans)

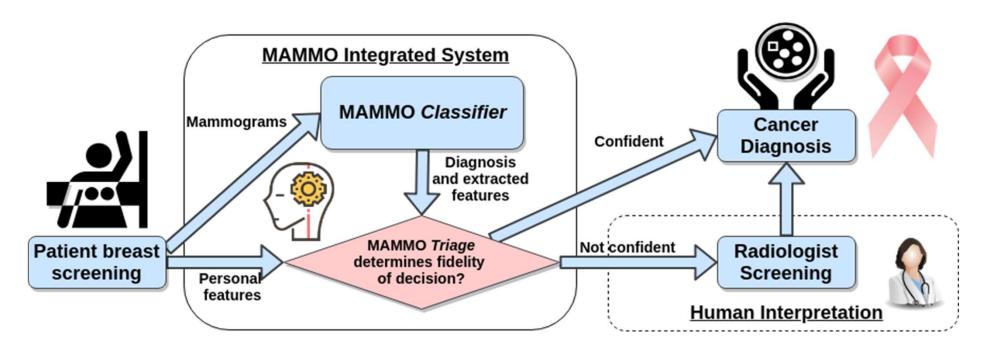
- Help humans acquire better information
- Direct humans towards the right information
- Help humans evaluate and integrate diverse sources of information and turn them into decisions
- Learn various knowledge representations that humans use
- Identify each individual's internal knowledge models and make the best use of that knowledge
- Representations to use when interacting with humans
- Aid human communication
- Help humans learn





## MAMMO: a framework for human-ML cooperation

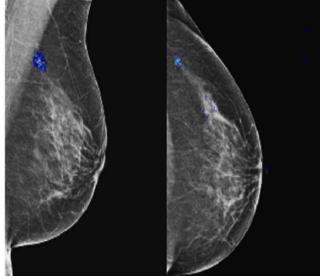
[Kyono, vdS, ML4HC 2019] [Kyono, Gilbert, vdS, JACR, 2019]



Machine learning for mammography article named "Best of 2020" by JACR

# Who is better? Human (radiologist) or machine (classifier)?

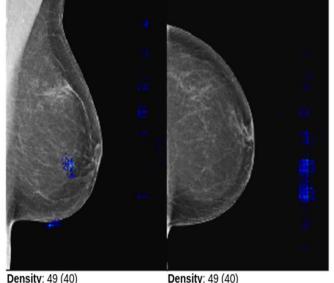
Patient A
Radiologist & Classifier correct



Density: 39 (22)
Susp: malignant (suspicious)
Sign: spic. mass (spic. mass)
Cons: visible (visible)

Density: 43 (22)
Susp: normal (suspicious)
Sign: spic. mass (spic. mass)
Cons: visible (visible)

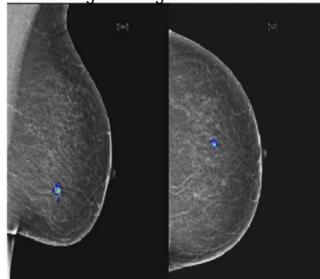
Patient B
Radiologist correct & Classifier wrong



Susp: normal (probably benign)
Sign: none (micro-calc)
Cons: not visible (barely)

Density: 49 (40)
Susp: normal (suspicious)
Sign: none (micro-calc)
Cons: not visible (visible)

Patient C
Radiologist wrong & Classifier correct



Density: 32 (14)
Susp: malignant (benign)
Sign: asym. dense (asym. den

Sign: asym. dense (asym. dense)

Cons: visible (visible)

Density: 25 (14) Susp: malignant (benign) Sign: asym dense (asym. dense)

Cons: visible (visible)

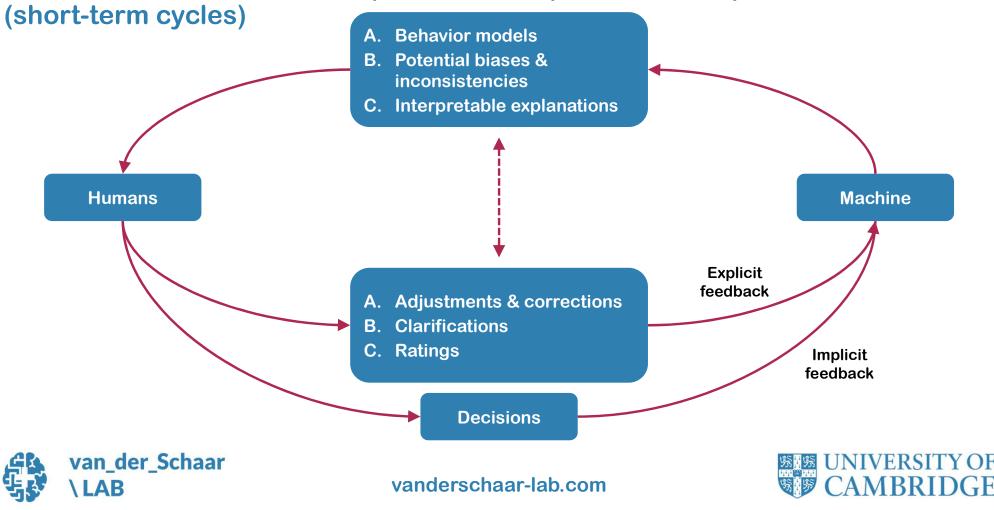
# MAMMO enables various cooperation modes between humans and machines

#### MAMMO – Cooperation modes

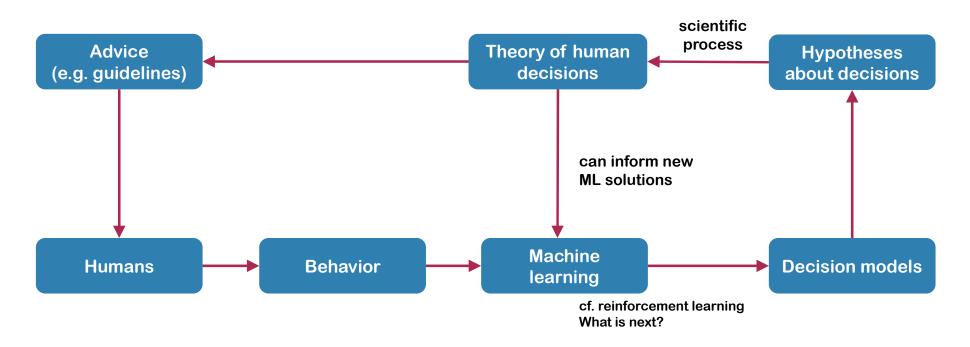
- 1. Radiologist + Classifier both activated as <u>double readers</u>
- 2. Radiologist + Classifier triaging operating as a single reader (hybridized)

|                        | Radiologist patients | ${\it Classifier}$ patients | Cohen's $\kappa$ | F1 score | TP  | TN  | FP | FN |
|------------------------|----------------------|-----------------------------|------------------|----------|-----|-----|----|----|
| Radiologist            | 1000                 | 0                           | 0.708            | 0.755    | 120 | 802 | 42 | 36 |
| Classifier             | 0                    | 1000                        | 0.420            | 0.433    | 61  | 811 | 33 | 95 |
| $Classifier^{\otimes}$ | 1000                 | 1000                        | 0.647            | 0.708    | 125 | 772 | 72 | 31 |
| MAMMO                  | 456                  | 544                         | 0.724            | 0.766    | 118 | 810 | 34 | 38 |

New human-machine partnership: Online operation



# New human-machine partnership (long-term cycles)







# Quantitative Epistemology: Our work so far

IDM framework (ICML'21)

| Agent = human                     |                                                                       |                                       |                               |                                            |  |
|-----------------------------------|-----------------------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------------------|--|
| Method Goal / motivating question |                                                                       | Planner                               | Normative params.             | Descriptive params.                        |  |
| IAS<br>(ICML'20)                  | How "timely" is agent decision making?                                | Timely active sensing                 | Deadline, cost of acquisition | Importance of accuracy, speed, efficiency  |  |
| AVRIL<br>(ICLR'21)                | What reward function does the agent optimize?                         | RL planner                            | -                             | Reward function                            |  |
| CIRL<br>(ICLR'21)                 | How important are various counterfactuals in making decisions?        | Counterfactual<br>RL planner          | Counterfactuals               | Importance weights                         |  |
| INTERPOLE<br>(ICLR'21)            | What are the subjective beliefs of the agent?                         | Policies based on decision boundaries | Interpretable state space     | Decision dynamics & decision boundaries    |  |
| IBRC<br>(ICML'21)                 | How optimal is agent behavior relative to an "ideal" reward function? | Bounded rational planner              | "Ideal" reward function       | Flexibility, optimism, adaptivity          |  |
| ICB (submitted)                   | How does agent's behavior evolve over time?                           | Contextual bandit strategies          | -                             | Time-varying beliefs over reward functions |  |





## Inverse decision modeling (IDM) – Learning Interpretable Representations of Behavior

#### Human decision-making is not perfect

bounded rationality, cognitive biases

#### How can we help humans make better decisions?

requires a quantitative account of the "imperfections" that necessitate correcting

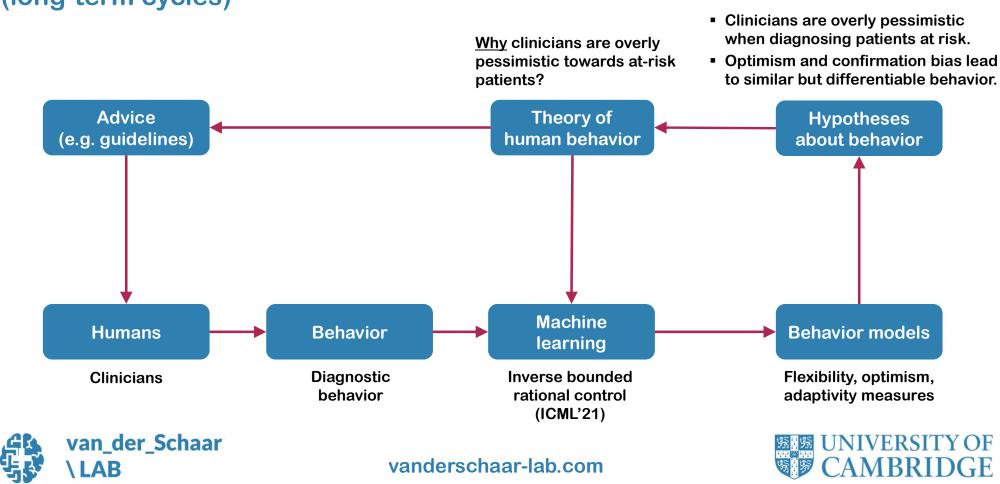
#### Inverse decision modeling

- general framework for learning representations of decision-making behavior
- enables us to describe existing behavior relative to "ideal" behavior





# New human-machine partnership within the IDM framework (long-term cycles)



## Conventional decision-making analysis

#### The "forward" problem:

What constitutes ideal behavior?



#### The "inverse" problem:

What does the existing behavior look like?



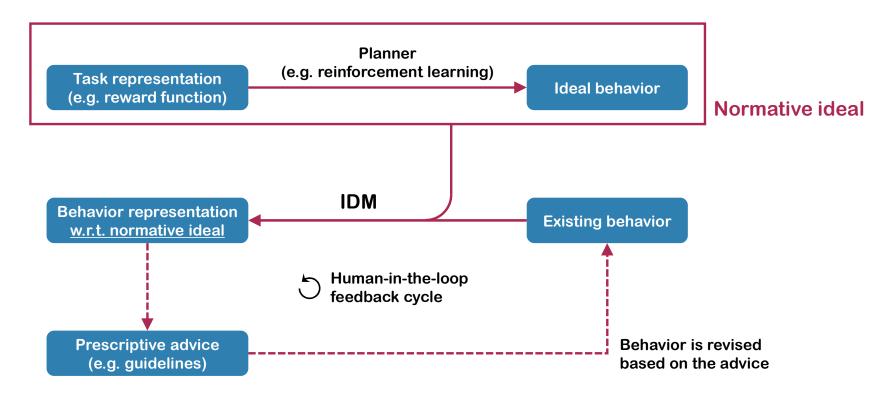
#### **Existing solutions offer limited help**

- forward solutions do not take human behavior into account
- inverse solutions focus on imitating human behavior





## Inverse decision modeling

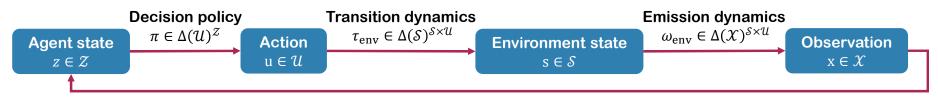






### **Planners**

#### **Problem setting:**



Planning parameters:  $\theta \in \Theta$  (e.g. utility function  $v \in \mathbb{R}^{S \times U}$ )

Behavior:  $\phi_{\pi,\rho} \in \Phi = \Delta(\cup_t (\mathcal{X} \times \mathcal{U})^t)$ 

Recognition policy  $\rho \in \Delta(Z)^{Z \times \mathcal{U} \times \mathcal{X}}$ 

### (Forward) planner:

$$F(\theta) = \phi_{\pi^*, \rho^*}$$
 where  $\pi^*, \rho^* = \operatorname{argmax}_{\pi, \rho} \mathcal{F}(\pi, \rho; \theta)$ 

• e.g. reinforcement learning:  $\mathcal{F}(\pi; \theta) = \mathbb{E}_{\pi}[\sum_t v(s_t, u_t)]$ 





## Inverse planners

■ **Demonstrated behavior**:  $\phi_{\text{demo}} \in \Phi$ 

■ Normative/descriptive params.:  $\theta = (\theta_{norm}, \theta_{desc}) \in \Theta = \Theta_{norm} \times \Theta_{desc}$ 

#### **Inverse planner:**

$$\hat{\theta}_{\text{desc}} = \operatorname{argmax}_{\theta_{\text{desc}}} \mathcal{G}(\phi_{\text{demo}}, \phi_{\text{imit}} = F(\theta_{\text{norm}}, \theta_{\text{desc}}))$$

- e.g. distribution matching:  $G(\phi_{\text{demo}}, \phi_{\text{imit}}) = -D_{\text{KL}}(\phi_{\text{demo}}||\phi_{\text{imit}})$
- projection of  $\phi_{\text{demo}}$  onto  $\Phi_{\theta_{\text{norm}}} = F(\theta_{\text{norm}}, \Theta_{\text{desc}})$
- Subsumes a wide range of algorithms
- Opens up new possibilities for interpretative research on decision making





## An application of IDM

#### Inverse reinforcement learning

- F =the RL planner
- $\theta_{\text{norm}} = \emptyset$
- $\theta_{\rm desc} = v$  (reward/utility function)
- $\mathcal{G}(\phi_{\text{demo}}, \phi_{\text{imit}} = F(v)) = \mathbb{E}[V_v(\phi_{\text{demo}}) V_v(\phi_{\text{imit}})]$

## How "rational" does $\phi_{\rm demo}$ appears to be in pursuing (the "ideal") v?

- F = a bounded rational planner
- $\theta_{\text{norm}} = v$
- $\theta_{\rm desc}$  = measures of "rationality"
- Appropriate inverse planner G
- Inverse rational bounded control





### **Bounded rational control**

Uncertain knowledge of the environment

- Unbiased prior:  $\tilde{\sigma} \in \Delta(\mathcal{T}, \mathcal{O})$  Biased specification policy:  $\sigma(z, u) \in \Delta(\mathcal{T}, \mathcal{O})^{\mathcal{Z}, \mathcal{U}}$

Recognition policy is given in terms of specification policy

- $ho_{ au,\omega}$  could be Bayesian inference under perfect knowledge  $au,\omega$

### **Bounded rational planner:**

$$\begin{array}{lll} \text{maximize} & \mathbb{E}_{\pi,\rho,\sigma}[\sum_t v(s_t,u_t)] & \text{s.t.} & \mathbb{E}_z[D_{\mathrm{KL}}(\pi(\cdot\,|z)||\tilde{\pi})] < A & \longrightarrow & \text{Decision complexity} \\ & & \mathbb{E}_{z,u}[D_{\mathrm{KL}}(\sigma(\cdot\,|z,u)||\tilde{\sigma})] < B & \longrightarrow & \text{Specification complexity} \\ & & \mathbb{E}_{z,u,\tau,\omega}\big[D_{\mathrm{KL}}\big(\varrho_{\tau,\omega}(\cdot\,|z,u)||\tilde{\varrho}\big)\big] < C & \longrightarrow & \text{Recognition complexity} \end{array}$$





## **Bounded rational control**

#### Value iteration:

$$V(z) \leftarrow \mathbb{E}\left[v(s, u) + \gamma V(z') - \alpha \log \frac{\pi(u|z)}{\tilde{\pi}(z)} - \beta \log \frac{\sigma(\tau, \omega|z, u)}{\tilde{\sigma}(z, u)} - \eta \log \frac{\varrho_{\tau, \omega}(z'|z, u)}{\tilde{\varrho}(z')}\right]$$

**Complexity terms** 

- $1/\alpha$  is a measure of flexibility
- $1/\beta$  is a measure of optimism
- $1/\eta$  is a measure of adaptivity





## Flexibility, optimism, adaptivity

• Observations: negative  $(x_{-})$ , positive  $(x_{+})$ 

• Actions: monitor  $(u_{=})$ , negative diagnosis  $(u_{-})$ , positive diagnosis  $(u_{+})$ 

Utility: 10 for correct diagnoses, -36 for incorrect diagnosis, -1 for monitoring



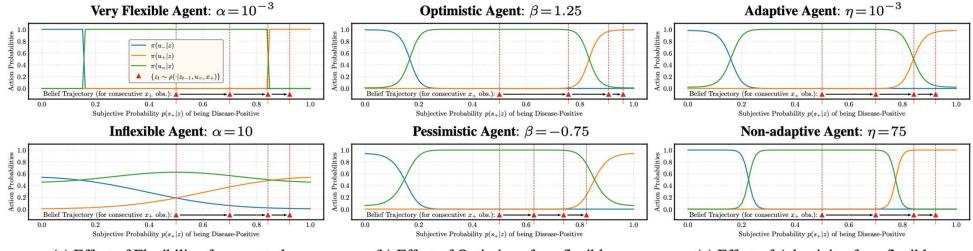


## Flexibility, optimism, adaptivity

• Observations: negative  $(x_{-})$ , positive  $(x_{+})$ 

■ Actions: monitor  $(u_{=})$ , negative diagnosis  $(u_{-})$ , positive diagnosis  $(u_{+})$ 

Utility: 10 for correct diagnoses, -36 for incorrect diagnosis, -1 for monitoring



(a) Effect of Flexibility, for a neutral  $(\beta = 10^3)$ , adaptive  $(\eta = 10^{-3})$  agent

cf. behavioral inconsistency

(b) Effect of Optimism, for a flexible  $(\alpha=0.5)$ , adaptive  $(\eta=10^{-3})$  agent

cf. over-/underreaction

(c) Effect of Adaptivity, for a flexible  $(\alpha = 0.5)$ , neutral  $(\beta = 10^3)$  agent

cf. base rate neglect/confirmation bias



vanderschaar-lab.com

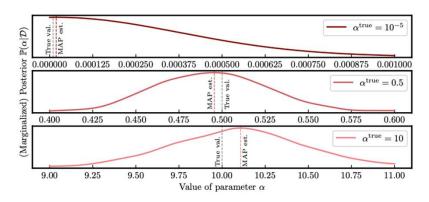


## Inverse bounded rational control

How "rational" does  $\phi_{\rm demo}$  appears to be in pursuing (the "ideal") v?

#### **Inverse bounded rational control:**

- F =the bounded rational planner
- $\theta_{\text{norm}} = v$
- $\theta_{\rm desc} = \alpha, \beta, \eta$
- $\mathcal{G}(\phi_{\text{demo}}, \phi_{\text{imit}}) = \mathbb{E}_{x, u \sim \phi_{\text{demo}}} [\mathbb{P}_{\phi_{\text{imit}}}(u_{1:T} || x_{1:T})]$

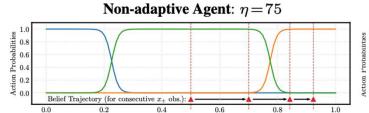


Learned  $\alpha$  for various levels of flexibility

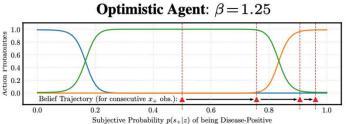




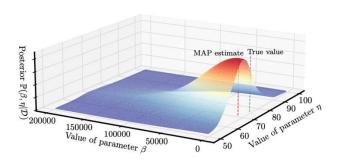
# Differentiating non-adaptivity and optimism



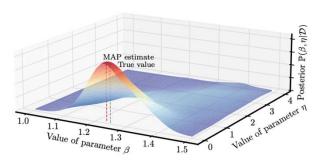
Subjective Probability  $p(s_+|z)$  of being Disease-Positive



Non-adaptivity and optimism lead to similar behavior.



Learned  $\beta$ ,  $\eta$  for Non-adaptive Behavior



Learned  $\beta$ ,  $\eta$  for Optimistic Behavior

Utilities estimated by IRL:

10 for correct diagnoses-26±3 for incorrect diagnoses

10 for correct diagnoses-27±3 for incorrect diagnoses





### Illustrative use of IDM

IDM can be used as an investigative device for auditing and understanding human decision-making

#### **Environment:**

Diagnosing Alzheimer's disease When to order an MRI?

MRIs are informative but costly

 $S = \{NL, MCI, Dementia\}$ 

 $A = \{MRI, No MRI\}$ 

Z =Cognitive test results  $\times$  MRI outcomes

**ADNI** dataset





## Pessimism when diagnosing Alzheimer's

#### **Diagnosis of Alzheimer's:**

When to order an MRI?

MRIs are informative but costly

 $\beta = 3.86$  for all patients

Clinicians appear to be significantly less optimistic when diagnosing:

- patients with the ApoE4 genetic risk factor  $(\beta = 601.74)$
- female patients  $(\beta = 920.70)$
- patients aged >75  $(\beta = 2265.30)$





## Our other work within the IDM framework

| Method                           | Goal / motivating question                                             | Planner                               | Normative params.             | Descriptive params.                        |  |  |
|----------------------------------|------------------------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------------------|--|--|
| IAS<br>(ICML'20)                 | How "timely" does the agent make decisions?                            | Timely active sensing                 | Deadline, cost of acquisition | Importance of accuracy, speed, efficiency  |  |  |
| AVRIL<br>(ICLR'21)               | What reward function does the agent optimize?                          | RL planner                            | -                             | Reward function                            |  |  |
| CIRL<br>(ICLR'21)                | How important are various counterfactuals in making decisions?         | Counterfactual<br>RL planner          | Counterfactuals               | Importance weights                         |  |  |
| INTERPOLE<br>(ICLR'21)           | What are the subjective beliefs of the agent?                          | Policies based on decision boundaries | Interpretable state space     | Decision dynamics & decision boundaries    |  |  |
| IBRC<br>(ICML'21)                | How rational the agent behaves relative to an "ideal" reward function? | Bounded rational planner              | "Ideal" reward function       | Flexibility, optimism, adaptivity          |  |  |
| ICB (submitted to<br>NeurIPS'21) | How does behavior evolve over time?                                    | Contextual bandit strategies          | -                             | Time-varying beliefs over reward functions |  |  |

### IDM defines a broad class of potential studies in behavior representation learning





# Replacing & Outperforming humans

| Previous works                         | Partially<br>controllable | Partially<br>observable | Purposeful<br>behavior | Subjective<br>dynamics | Action<br>stochasticity |
|----------------------------------------|---------------------------|-------------------------|------------------------|------------------------|-------------------------|
| Behavioral cloning                     | ✓                         | ✓                       | Χ                      | Χ                      | ✓                       |
| Subjective behavioral cloning          | ✓                         | ✓                       | X                      | $\checkmark$           | ✓                       |
| Deterministic distribution matching    | ✓                         | Χ                       | Χ                      | Χ                      | Χ                       |
| Stochastic distribution matching       | ✓                         | X                       | X                      | X                      | ✓                       |
| Deterministic IRL                      | ✓                         | Χ                       | ✓                      | Χ                      | X                       |
| Stochastic IRL                         | ✓                         | X                       | ✓                      | X                      | ✓                       |
| Subjective IRL                         |                           | X                       | ✓                      | ✓                      | ✓                       |
| Risk sensitive IRL                     |                           | X                       | ✓                      | ✓                      | X                       |
| Deterministic partially-observable IRL |                           | ✓                       | ✓                      | Χ                      | Χ                       |
| Stochastic partially-observable IRL    |                           | ✓                       | ✓                      | X                      | ✓                       |
| Subjective partially-observable IRL    |                           | ✓                       | ✓                      | ✓                      | ✓                       |
| Maximum entropy IRL                    |                           | X                       | <b>√</b>               | X                      | <b>√</b>                |
| Subjective maximum entropy IRL         |                           | X                       | ✓                      | ✓                      | ✓                       |





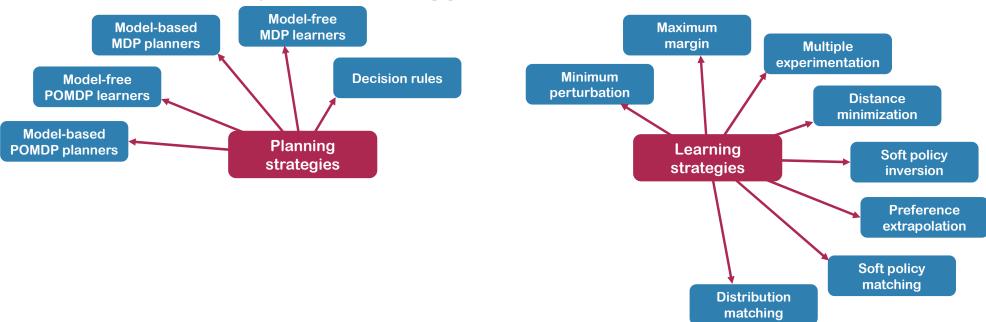
## Understanding humans

| Inverse decision model                 | Partially<br>controllable | Partially<br>observable | Purposeful<br>behavior | Subjective<br>dynamics | Action stochasticity | Knowledge<br>uncertainty | Decision<br>complexity | Specification complexity | Recognition<br>complexity |
|----------------------------------------|---------------------------|-------------------------|------------------------|------------------------|----------------------|--------------------------|------------------------|--------------------------|---------------------------|
| Behavioral cloning                     | ✓                         | ✓                       | Χ                      | Χ                      | ✓                    | Χ                        | Χ                      | Χ                        | Χ                         |
| Subjective behavioral cloning          | ✓                         | ✓                       | Χ                      | $\checkmark$           | ✓                    | X                        | X                      | X                        | X                         |
| Deterministic distribution matching    | ✓                         | Χ                       | Χ                      | Χ                      | Χ                    | Χ                        | Χ                      | Χ                        | Χ                         |
| Stochastic distribution matching       | ✓                         | X                       | X                      | X                      | ✓                    | X                        | X                      | X                        | X                         |
| Deterministic IRL                      | ✓                         | Χ                       | ✓                      | Χ                      | Χ                    | Χ                        | Χ                      | Χ                        | Χ                         |
| Stochastic IRL                         | ✓                         | Χ                       | ✓                      | X                      | ✓                    | X                        | X                      | X                        | X                         |
| Subjective IRL                         | ✓                         | Χ                       | $\checkmark$           | ✓                      | ✓                    | X                        | X                      | X                        | X                         |
| Risk sensitive IRL                     | ✓                         | Χ                       | ✓                      | ✓                      | X                    | ✓                        | X                      | X                        | X                         |
| Deterministic partially-observable IRL | ✓                         | ✓                       | ✓                      | Χ                      | Χ                    | Χ                        | Χ                      | Χ                        | Χ                         |
| Stochastic partially-observable IRL    | ✓                         | ✓                       | ✓                      | X                      | ✓                    | X                        | X                      | X                        | X                         |
| Subjective partially-observable IRL    | ✓                         | ✓                       | ✓                      | ✓                      | ✓                    | X                        | X                      | X                        | X                         |
| Maximum entropy IRL                    | ✓                         | Χ                       | ✓                      | Χ                      | ✓                    | Χ                        | ✓                      | Χ                        | Χ                         |
| Subjective maximum entropy IRL         |                           | Χ                       | ✓                      | ✓                      | ✓                    | X                        | ✓                      | X                        | X                         |
| Inverse bounded rational control       | ✓                         | ✓                       | ✓                      | ✓                      | <b>√</b>             | <b>√</b>                 | <b>√</b>               | <b>√</b>                 | <b>√</b>                  |





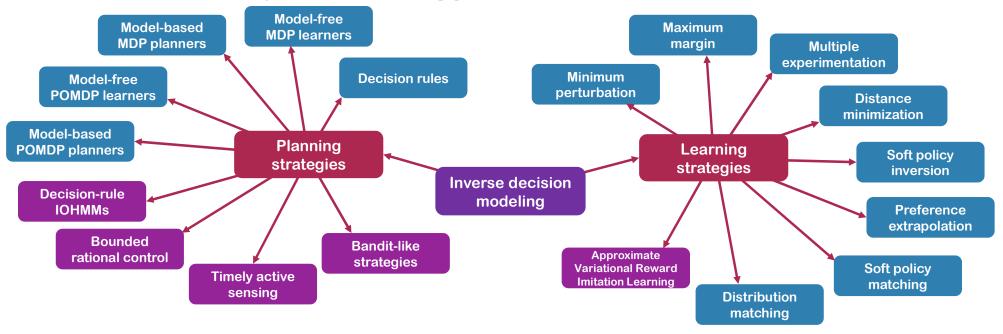
# Quantitative Epistemology: New ML needed







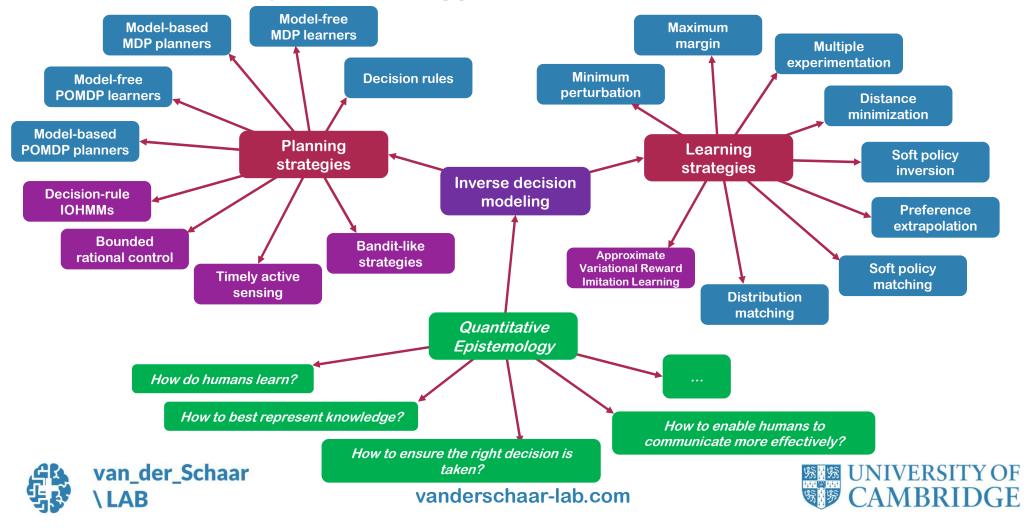
## Quantitative Epistemology: New ML needed







# Quantitative Epistemology: New ML needed



## **Quantitative epistemology**

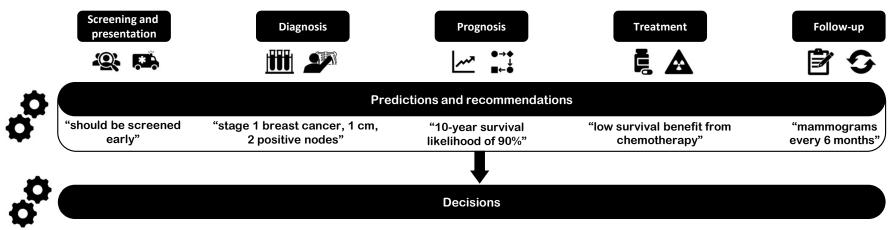
- A new human-machine partnership
- A new field of multi-disciplinary research
- Partnering with humans to empower them, not to replace them!



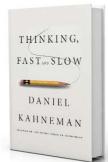


## The Standard ML Agenda

A standard ML scenario: no human agency



Learn how humans make decisions; incorporate this into the design of more human-like AI/ML; REPLACE & OUTPERFORM HUMANS

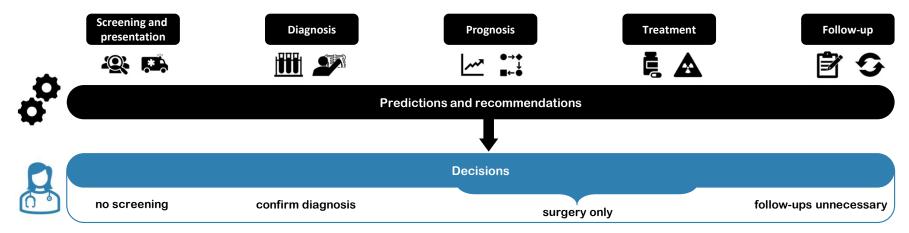






## **Standard Decision Support**

AI/ML predictions and recommendations guiding human decision-making

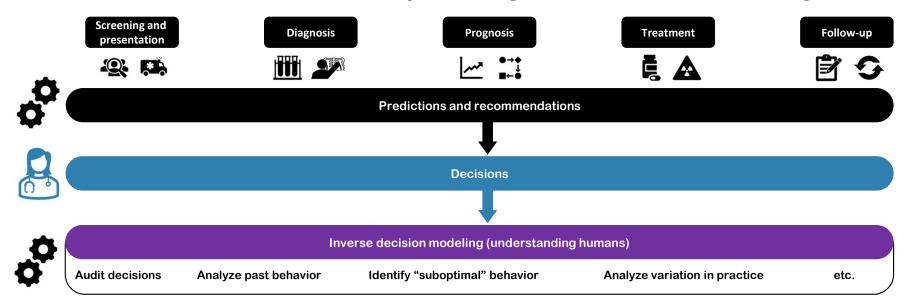






## Inverse decision modeling (vdS-Lab)

Surface-level analysis of/insight into human decision-making

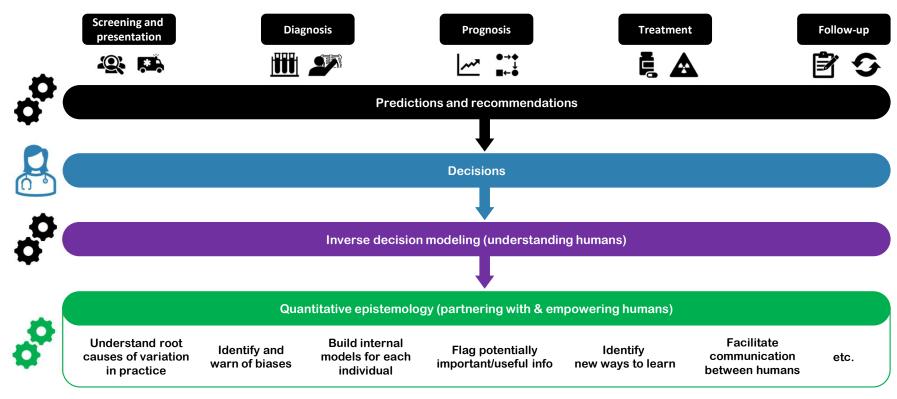






## **Quantitative Epistemology (vdS-Lab)**

Extracting actionable meaning from analysis of decision-making...

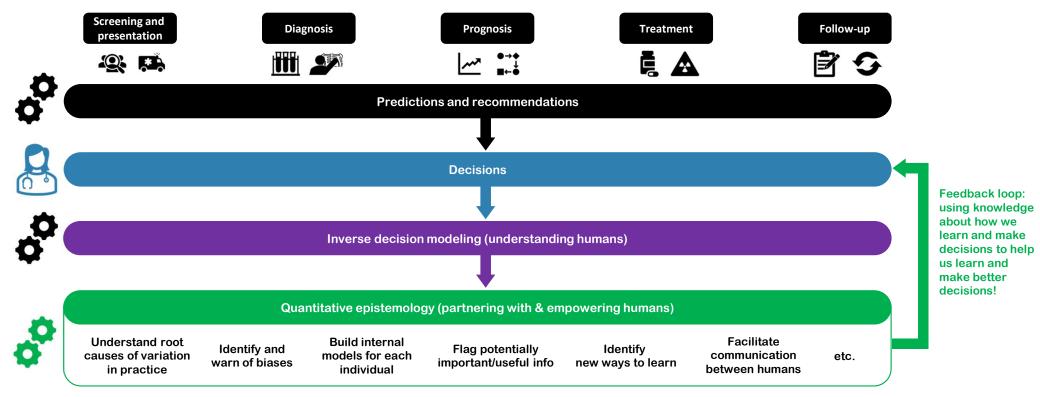






## **Quantitative Epistemology (vdS-Lab)**

... creating an empowering loop that maximizes human agency and helps us make better decisions

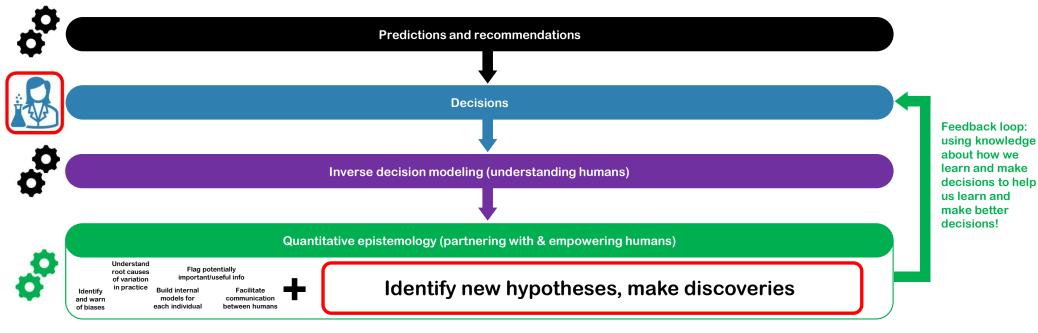






## **Quantitative Epistemology (vdS-Lab)**

For the researcher: new hypotheses and discoveries!







## For more information & updates

#### vanderschaar-lab.com

- → Research pillars
- → Quantitative epistemology

