XAI beyond looking at heatmaps – towards directions for model improvement.

Alexander Binder

September 2, 2022

UiO **Conversity of Oslo**

- 1. The definition of explanation depends on the question
- 2. Shapley Values + Why for many data types XAI research does not end with them
- Decompositions II Linearizations: gradient methods, smoothing, modified gradients including LRP
- 4. Examples for the value of explanation methods for model improvement

1. As many definitions of explanation as there are different questions

Authors opinion: no method rules them all

1. As many definitions of explanation as there are different questions

Authors opinion: no method rules them all

5

Popular in deep learning: t-SNE van der Maaten et al.:

 $https://lvdmaaten.github.io/tsne/examples/caltech101_tsne.jpg$

- PCA projections (K. Pearson), Isomap (Tenenbaum et al. graph defined by k-nearest neighbors and euclidean distances along edges), many others
- CHAL: how to choose a low-dimensional approximation?
- CHAL: parameter sensitivity https://distill.pub/2016/misread-tsne/
- good for exploration with follow up confirmation

Understanding the model: DeepDream

DeepDream as an example of Activation Maximization

Credit: https://github.com/gordicaleksa/pytorch-deepdream

In what ways can one enhance it with more than esthetic value?

Understanding the model: Rank samples which maximize a channel activation

- The top-3 images which maximally activate a particular channel of layer 1ayer4.2.conv2 of a ResNet-50 after fine-tuning on Pascal VOC.
- The picture also shows an explanation which region in the image is contributing to the activation of the channel (using LRP-max).

Channel has learnt to detect bus views. Selection within the Pascal VOC validation set.

1. The definition of an explanation depends on the question

Authors opinion: no method rules them all

Find most similar samples that were used to arrive at a prediction for a sample x.

- k-nearest neighbors
- Explain a prediction in terms of closest training samples

Explain a prediction in terms of closest training samples

This Looks Like That: Deep Learning for Interpretable Image Recognition

Chaofan Chen* Duke University cfchen@cs.duke.edu Oscar Li* Duke University oscarli@alumni.duke.edu Chaofan Tao Duke University chaofan.tao@duke.edu

Alina Jade Barnett Duke University abarnett@cs.duke.edu Jonathan Su MIT Lincoln Laboratory[†] su@ll.mit.edu Cynthia Rudin Duke University cynthia@cs.duke.edu

Credit: Chen et al. https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf

1. The definition of an explanation depends on the question

Authors opinion: no method rules them all

Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives

Amit Dhurandhar* IBM Research Yorktown Heights, NY 10598 adhuran@us.ibm.com Pin-Yu Chen* IBM Research Yorktown Heights, NY 10598 pin-yu.chen@ibm.com Ronny Luss IBM Research Yorktown Heights, NY 10598 rluss@us.ibm.com

Chun-Chen Tu University of Michigan Ann Arbor, MI 48109 timtu@umich.edu Paishun Ting University of Michigan Ann Arbor, MI 48109 paishun@umich.edu Karthikeyan Shanmugam IBM Research Yorktown Heights, NY 10598 karthikeyan.shanmugam2@ibm.com

Payel Das IBM Research Yorktown Heights, NY 10598 daspa@us.ibm.com

Credit: https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf

Understanding a *single* prediction: Pertinent positives and Negatives

Pertinent positive: what to retain from a sample?

Pertinent negative: what to change so that prediction switches?

Pertinent positive: cyan, pertinent negative: pink

Credit: https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf

- CHAL: how to delete/replace information? Result is plausible/outlier?
- many different PP/PN how to integrate them?

Is this a complete picture?

Many ways to define an explanation of a prediction or a model.

Many ways to define an explanation of a prediction or a model.

A more narrow scope: explaining predictions on a single sample by decomposition

- case of images: compute a score $r_d(x)$ for every input dimension d of the input sample $x = (x_1, \ldots, x_d, \ldots, x_D)$

$$\underbrace{f(x) \approx \sum_{d=1}^{D} r_d(x)}_{decomposition}$$
(1)

- objective function is left open

What is a good explanation within the set of decomposition approaches?

- There a theoretically optimal approach!
 - 2. Shapley values

The Setup:

- Have function f, and a point to be explained $x = (x_1, \ldots, x_d)$.
- We can evaluate f on subsets $x_S = \{x_{i_1}, x_{i_2}, x_{i_3}, \dots | \forall k : i_k \in S\}$ of features from x.

Shapley value

then the Shapley value is defined as:

$$\phi_{j}(f,x) = \frac{1}{d} \sum_{S \subseteq \{1,...,d\} \setminus \{j\}} \frac{f(x_{S \cup \{j\}}) - f(x_{S})}{\binom{d-1}{|S|}}$$
(2)

Game Theory: S is set of players playing a game with outcome $f(x_S)$. j a member which can join the set with outcome $f(x_{S \cup \{i\}})$ Its interpretation?

- Have function f, and a point to be explained $x = (x_1, \ldots, x_d)$.
- We can evaluate f on subsets $x_S = \{x_{i_1}, x_{i_2}, x_{i_3}, \dots | \forall k : i_k \in S\}$ of features from x.
- then the Shapley value is defined as:

$$\phi_{j}(f,x) = \frac{1}{d} \sum_{S \subseteq \{1,...,d\} \setminus \{j\}} \frac{f(x_{S \cup \{j\}}) - f(x_{S})}{\binom{d-1}{|S|}}$$
(3)
$$= \frac{1}{{}_{\text{numsets}}} \sum_{k \ge 1 \text{ sets } S \text{ without } j, |S| = k} \frac{\text{differential contrib of } j \text{ to set } S}{\text{number of sets of same size } |S|}$$
(4)

We have interpreted SHAP. How to categorize this approach?

We have interpreted SHAP. How to categorize this approach?

Combinatorially exhaustive occlusion differences for *j* differential values: sets with player *j*, sets without *j* (cf. Petliuk et al. RISE https://arxiv.org/abs/1806.07421)

Shapley values

Favourable theoretical properties:

- does not make a difference, zero Shapley-value

$$\forall S: f(x_{S\cup\{j\}}) = f(x_S) \Rightarrow \phi_j(f, x) = 0 \tag{7}$$

- value-equal pair of features j, k, identical Shapley-value:

$$\forall S: f(x_{S \cup \{j\}}) = f(x_{S \cup \{k\}}) \Rightarrow \phi_j(f, x) = \phi_k(f, x)$$
(8)

- Efficiency:

$$\sum_{j=1}^{d} \phi_j(f, x) = f(x) - E_X[f(X)]$$
(9)

- decomposition of f(x)
- distributes the difference between function value f(x) and its expectation $E_X[f(X)]$ onto all dimensions in an equal way (not shown here¹)

¹Grabisch https://www.worldscientific.com/doi/abs/10.1142/S0218488597000440

We can evaluate f on subsets $x_S = \{x_{i_1}, x_{i_2}, x_{i_3}, \dots | \forall k : i_k \in S\}$ of features from x. – Outside of tabular data types this is a very strong assumption.

- How to remove a region in an image, a language sentence ?
- How to remove an interval of a data point being a time series ?
- is S, $S \cup \{j\}$ plausible or outlier (bonds and molecules) ?

Dimensions x_d of a data sample $x \leftrightarrow$ Players in a game ?

No optimality guarantee when

- applicability assumptions do not hold well
- one has to use approximations (e.g. MC)

What other methods exist for data types where Shapley assumptions do not hold well?

3. Linearizations

$\label{eq:Linearizations} \mbox{ (Gradient, Gradient \times Input, Integrated Gradient, LIME, Grad-CAM)} \\$

- Starting point was: $f(x) \approx \sum_{i=1}^{d} r_d(x) f$ is non-linear now
- Taylor Expansion (3rd order)

$$f(x) \approx f(x_{0}) + \frac{1}{1!} Df(x_{0})[x - x_{0}] + \frac{1}{2!} D^{2}f(x_{0})[x - x_{0}, x - x_{0}] + \frac{1}{3!} D^{3}f(x_{0})[x - x_{0}, x - x_{0}, x - x_{0}] + \mathcal{O}(||x - x_{0}||^{4})$$
(10)
$$Df(x_{0}) = \left(\frac{\partial f}{\partial x_{d}}(x_{0}), d = 1, \dots, D\right) = \nabla f(x_{0}) D^{2}f(x_{0}) = \left(\frac{\partial^{2}f}{\partial x_{d}x_{e}}(x_{0}), d, e = 1, \dots, D\right) D^{3}f(x_{0}) = \left(\frac{\partial^{3}f}{\partial x_{d}x_{e}x_{c}}(x_{0}), c, d, e = 1, \dots, D\right)$$

Linearizations (Gradient, Gradient \times Input, Integrated Gradient, LIME, Grad-CAM)

- Starting point was: $f(x) = \sum_{i=1}^{d} r_d(x) f$ is non-linear now

- Taylor Expansion up to first order:

$$f(x) \approx f(x_0) + \nabla f(x_0) \cdot (x - x_0) \tag{11}$$

$$=f(x_0)+\sum_d \frac{\partial f}{\partial x_d}|_{x_0}(x_d-x_{0,d})$$
(12)

use as explanation:

$$r_d(x) = \frac{\partial f}{\partial x_d}|_{x_0}(x_d - x_{0,d})$$
(13)

- $\quad \text{Gradient} \, \times \, \text{Input}$
- Integrated Gradient
- LIME
- Grad-CAM
- LRP

Use as explanation:

$$r_d(x) = \frac{\partial f}{x_d}(x) x_d, \ \mathbf{R} = (r_d, d = 1, \dots, D) = \nabla f(x) \cdot x$$

(+) derivation via global Taylor decomposition for a point x_0 orthogonal to the gradient $(\nabla f(x) \cdot x_0 = 0)$ in the point x to be explained.

$$f(x_0) = f(x) + \nabla f(x) \cdot (x_0 - x) + \mathcal{O}(||x - x_0||^2)$$

$$\Rightarrow f(x) \approx f(x_0) + \nabla f(x) \cdot (x - x_0)$$

$$= f(x_0) + \nabla f(x) \cdot x - \underbrace{\nabla f(x) \cdot x_0}_{=0}$$

 $f(x_0)$ is a bias term, independent of any dimension

(-) can be noisy for deep ReLU-networks due to gradient shattering:

Explanation Methods: Gradient \times Input

The noiseness of gradient \times input and related methods for deep ReLU-networks:

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had high (low) impact on the quality of sensitivity map.

Credit: https://arxiv.org/pdf/1706.03825.pdf

Gradient Shattering Effect

- Montufar et al. 2014 https://papers.nips.cc/paper/
 5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf.
- Balduzzi et al. 2017 http://proceedings.mlr.press/v70/balduzzi17b/balduzzi17b.pdf.

Explanation Methods: Integrated Gradient

Sundararajan et al., *ICML 2017*,

https://dl.acm.org/doi/10.5555/3305890.3306024

A heuristic very similar to the gradient \times input:

$$r_d(x) = (x_d - x_d^{(0)}) \frac{1}{R} \sum_{r=1}^R \frac{\partial f}{\partial x_d} |_{z = x^{(0)} + \frac{r}{R}(x - x^{(0)})}$$

- Averages over partial derivatives along multiple points $x^{(0)} + \frac{r}{R}(x - x^{(0)})$ along a path from $x^{(0)}$ to x.
- Noisy heatmaps in ReLU networks due to gradient shattering.
 Averaging gradients to smoothe the noise.
- IG gets better with many roots used (+ slows down).

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had high (low) impact on the quality of sensitivity map.

Credit: https://arxiv.org/pdf/1706.03825.pdf

Selvaraju et al. https://arxiv.org/abs/1610.02391

$$\alpha_{k}^{c} = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y^{c}}{\partial A_{ij}^{k}}$$
(14)
$$G_{ij}^{c} = \sum_{k} \alpha_{k}^{c} A_{ij}^{k}$$
(15)
$$L_{ii}^{c} = \text{ReLU}(G_{ii}^{c})$$
(16)

It is almost gradient \times input in feature space. Three differences:

- smoothing of the gradient in feature space $\frac{\partial y^c}{\partial A_{ij}^k}$ by spatial averaging (cf. Integrated Gradients)
- average over all channels $\sum_k \alpha_k^c A_{ij}^k$
- retain positive part only (cf. Guided Backpropagation)

Explanation Methods: LRP

- Divide and conquer: decompose network in layers

- Taylor approximation per layer/neuron
- easier to find roots for one layer
- robustness to gradient shattering

Explanation Methods: LRP

LRP has the same flow along graphs as the gradient.

Backpropagation: Chainrule along a graph

 $\frac{dy}{dz_6} = \frac{\partial z_4}{\partial z_6} \frac{dy}{dz_4} + \frac{\partial z_5}{\partial z_6} \frac{dy}{dz_5} \text{ partial derivatives flow along the edges.}$

Relevance distribution for one neuron: example β -rule 134

forward pass:
$$y_k = g\left(\sum_i w_{ik} x_i + b\right)$$

backward: have computed already the relevance R_k for the neuron output y_k LRP backward: $R_{i \leftarrow k}(\mathbf{x}) = R_k M_{i \leftarrow k}(w, x)$

fraction of positive part of input dim x_i relative to all inputs $x_{i'}$

$$\beta = \mathbf{0}: \ M_{i \leftarrow k} = \underbrace{\frac{(w_{ik} \times i)_{+}}{\sum_{i'} (w_{i'k} \times i')_{+}}}_{\beta > 0: \ M_{i \leftarrow k}} = (1 + \beta) \underbrace{\frac{(w_{ik} \times i)_{+}}{\sum_{i'} (w_{i'k} \times i')_{+}}}_{\beta > 0: \ M_{i \leftarrow k}} - \beta \underbrace{\frac{(w_{ik} \times i)_{-}}{\sum_{i'} (w_{i'k} \times i')_{-}}}_{\beta > 0: \ M_{i \leftarrow k}}$$

Relevance distribution for one neuron: example β -rule 134

forward pass:
$$y_k = g\left(\sum_i w_{ik} x_i + b\right)$$

backward: have computed already the relevance R_k for the neuron output y_k LRP backward: $R_{i\leftarrow k}(\mathbf{x}) = R_k M_{i\leftarrow k}(w, x)$

fraction of positive part of input dim x_i relative to all inputs $x_{i'}$

$$\beta = 0: M_{i \leftarrow k} = \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \sum_{j'} (w_{i'k} \times i)_{+} \end{array}}_{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ (w_{ik} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{-} \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \\ \vdots \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{-} \\ \vdots \\ \vdots \\ (w_{i'k} \times i')_{-} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \\ \vdots \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ \vdots \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ (w_{ik} \times i')_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{ik} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{ik} \times i)_{+} \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \\ \vdots \\ (w_{i'k} \times i')_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \\ \vdots \\ (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \\ \vdots \\ (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)}_{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times i)_{+} \end{array}\right)} - \beta \underbrace{\left(\begin{array}{c} (w_{i'k} \times$$
Relevance distribution for one neuron: example β -rule 134

forward pass:
$$y_k = g\left(\sum_i w_{ik} x_i + b\right)$$

backward: have computed already the relevance R_k for the neuron output y_k LRP backward: $R_{i \leftarrow k}(\mathbf{x}) = R_k M_{i \leftarrow k}(w, x)$

fraction of positive part of input dim x_i relative to all inputs $x_{i'}$

$$\beta = 0: \quad M_{i \leftarrow k} = \underbrace{\left(\underbrace{w_{ik} x_i}_{i} \right)_+}_{\beta > 0: \quad M_{i \leftarrow k}} = (1 + \beta) \underbrace{\left(\underbrace{w_{ik} x_i}_{i'} \right)_+}_{\text{positive contributions}} -\beta \underbrace{\left(\underbrace{w_{ik} x_i}_{i'} \right)_-}_{\text{negative contributions}} \right)$$

given: have computed already R_k as relevance of neuron output

$$y_{k} = g(\sum_{i} w_{ik} \times_{i} + b)$$

$$R_{i \leftarrow k}(\mathbf{x}) = R_{k} M_{i \leftarrow k}(w, \mathbf{x})$$

$$M_{i \leftarrow k} = (1 + \beta) \underbrace{\frac{(w_{ik} \times_{i})_{+}}{\sum_{i'} (w_{i'} \times x_{i'})_{+}}}_{\text{positive contributions}} -\beta \underbrace{\frac{(w_{ik} \times_{i})_{-}}{\sum_{i'} (w_{i'} \times x_{i'})_{-}}}_{\text{negative contributions}}$$

- β controls ratio of negative to total relevance = $\frac{\beta}{1+2\beta}$.
- negative to total relevance fixed independent of neuron inputs x_i (!).
- − bounded relevance scale: $|R_{i\leftarrow k}| \le (1 + β)|R_k|$ for smoothness of explanations
- compare to gradient clipping for batchnorm-free training, e.g. Brock et al https://arxiv.org/pdf/2102.06171.pdf

A few topics in explaining models

My method is the best!! Am I one of them?

Credit: Hanabusa Itcho

- A. Image captioning: LRP detects words induced by textual correlations unsupported by image content²
- B. Improving test phase model accuracy in small-sample size training tasks (few-shot learning): LRP-guided training to improve cross-domain few-shot learning³
- C. Identifying and Improving what universal counterfeit image detectors use:

Discovering Transferable Forensic Features for CNN-generated Images $\mathsf{Detection}^4$

 ² J Sun, S Lapuschkin, W Samek, A Binder, Information Fusion, 2021
 ³ J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020
 ⁴ K Chandrasegaran, NT Tran, A Binder, NM Cheung, ECCV 2022

Case A: Image captioning: LRP detects words induced by textual correlations unsupported by image content⁵

- starting point: wanted to compare attention vs backward explanation
- relevance: e.g. medical image to text model: does it look at the X-ray to make a prediction?

⁵J Sun, S Lapuschkin, W Samek, A Binder, Information Fusion, 2021

- Words are generated often by recurrent neural networks: word_{n+1} = RNN_Attention(Image,word₁, word₂,...,word_n)
- Models use attention usually

Many image captioning models have a principled structure:

take a word embedding $E_m(w_{t-1})$ and a CNN feature map I_g of an image as inputs, process them by an RNN:

$$\mathbf{x}_t = [\mathbf{E}_{\mathbf{m}}(w_{t-1}), \mathbf{I}]$$
$$\mathbf{h}_t, \mathbf{m}_t = LSTM(\mathbf{x}_t, \mathbf{h}_{t-1}, \mathbf{m}_{t-1})$$

An attention mechanism $Att(\cdot)$ uses h_t and I to obtain a spatially reweighted context c_t for word prediction.

 $m{c}_t = Att(m{h}_t, m{m}_t, m{I})$ $m{y}_t = Predictor(m{h}_t, m{c}_t)$ How may $Att(\cdot)$ look like?

For *adaptive attention:* Let m_t be the LSTM memory cell, then:

$$s_{t} = \sigma(W_{x}x_{t} + W_{h}h_{t-1}) \odot \tanh(m_{t})$$

$$a = w_{a} \tanh(IW_{l} + W_{g}h_{t})$$

$$b = w_{a} \tanh(W_{s}s_{t} + W_{g}h_{t}))$$

$$\alpha_{t} = \operatorname{softmax}(a) \in \mathbb{R}^{n_{v}}$$

$$\beta_{t} = \operatorname{softmax}([a, b])_{(n_{v}+1)} \in \mathbb{R}^{1}$$

$$c_{t} = (1 - \beta_{t}) \sum_{k=1}^{n_{v}} \alpha_{t}^{(k)}I^{(k)} + \beta_{t}s_{t}$$

$$c_{t} = Att(h_{t}, m_{t}, I)$$

How may $Att(\cdot)$ look like?

For multi-head transformer attention:

$$\hat{\boldsymbol{V}}^{(i)} = \operatorname{softmax}\left(\frac{\boldsymbol{Q}^{(i)}\boldsymbol{K}^{(i)\boldsymbol{T}}}{\sqrt{d_k}}\right)\boldsymbol{V}^{(i)} + \boldsymbol{V}^{(i)}$$
$$\boldsymbol{Q} := \boldsymbol{h}_t, \boldsymbol{K} := \boldsymbol{I}\boldsymbol{W}_k, \boldsymbol{V} := \boldsymbol{I}\boldsymbol{W}_v$$
$$\boldsymbol{c}_t = Att(\boldsymbol{h}_t, \boldsymbol{I}) = (\hat{\boldsymbol{V}}^{(1)}, \dots, \hat{\boldsymbol{V}}^{(K)})$$

Observation of a common structure: weight (depends on features) times concatenated features

Attention-weighted features share a common structure

$$f=\sum_i w_i(v)v_i$$

apply signal takes all idea (L Arras et al. ACL 2019):

- do not propagate relevance through weights $w_i(v)$ to v
- propagate relevance only to v_i directly, by interpreting it as a weighted sum of v_i with static weights w_i:

$$R(f) \stackrel{LRP-\epsilon}{\longmapsto} \{R(v_i)\}$$

Combine LSTM-explanation idea and this idea – have explanations for image captioning

Detecting structure-induced predictions – image captioning case

- Words are generated often by recurrent neural networks: word_{n+1} = f(Image,word₁, word₂,...,word_n)
- Two principles when using LRP for RNNs:

(1) signal takes all in terms like $w = \sigma(z_{g,t}) \odot \tanh(z_{s,t})$ do not distribute relevance on gates $z_{g,t}$. Only onto signal terms $z_{s,t}$:

$$R(w)\mapsto (R(z_{g,t}),R(z_{s,t})):=(0,R(z_{s,t}))$$

(2) +: use LRP- ϵ , other linear operations: use LRP- ϵ , β , γ

Detecting structure-induced predictions – image captioning

case

A

(b)

(d)

(h)

A person sitting on a bench with a skateboard

A man sitting on a chair in front of a TV

(e)

A man holding a banana in his hand

rd A bedroom with a bed a chair and a television

A close up of a person on a cellphone

A man in a red striped shirt is looking at a cellphone

A black and white cat standing next to a person

(c)

(i)

A man in a suit and tie is speaking into a microphone

A man in a black shirt is holding a microphone

- Forward pass spatial attention cannot perform this task

Detecting structure-induced predictions – image captioning case

- Debias by explaining object words. Use explanations to reweight CNN features in training.
- If the prediction for one step is made by an fc layer using c_t , h_t as

$$p_u = f_c(c_t + h_t),$$

then during training compute the normalized relevances $\hat{R}(c_t) \in [0,2], \ \hat{R}(h_t) \in [0,2]$

- use them as element-weise weighting and optimize:

$$p_{w} = f_{c} \left(\underbrace{\hat{R}(c_{t}) \odot c_{t}}_{\text{weighted feat}} + \underbrace{\hat{R}(h_{t}) \odot h_{t}}_{\text{weighted feat}} \right)$$
$$L = \lambda \underbrace{L_{ce}(p_{u}, y)}_{\text{usual loss}} + (1 - \lambda) L_{ce}(p_{w}, y)$$

wher L_{ce} is the usual cross entropy loss, and y are the ground truth labels

- Able to measure the quality of debiasing

Detecting structure-induced predictions – image captioning case

During training: reweight CNN features using explanation scores. Improves prediction on most frequent object words – by reducing hallucinating them.

Table: (mAP) of the predicted 25 most frequent object words. (*ce*): models are trained only with cross-entropy loss. The other models are finetuned with SCST for the non-differentiable CIDEr score. *BU* and *CNN* denote Faster-RCNN features and CNN features. Higher mAP means less object hallucination.

dataset	Flick	<r30k< th=""><th colspan="5">MSCOCO2017</th></r30k<>	MSCOCO2017				
mAP	baseline	LRP-IFT	baseline	LRP-IFT			
Ada-LSTM-CNN	52.95	54.47	72.29	73.85			
Ada-LSTM-BU	63.84	64.61	78.57	80.55			
MH-FC-CNN	55.98	57.71	73.74	73.42			
MH-FC-BU	64.46	64.98	78.10	77.71			
Ādā-LSTM-CNN (ce)	58.53	60.80	73.65	74.00			
Ada-LSTM-BU (ce)	60.70	65.01	79.06	79.80			
MH-FC-CNN (ce)	55.50	59.23	77.15	76.87			
MH-FC-BU (ce)	64.08	66.10	81.02	81.16			

Little change on the set of all words:

Table: The performance of the Ada-LSTM model and MH-FC model with or without LRP-IFT on the test set of Flickr30K and MSCOCO2017 datasets. L. denotes LRP-inference fine-tuned models. *BU* and *CNN* denote bottom-up features and CNN features. Measures: F_B : F_{BERT} S: SPICE.

dataset	Flick	r30K	MSCOCO2017
	F_B	S	F _B S
Ada-LSTM-CNN	90.6	13.9	91.7 19.5
L.Ada-LSTM-CNN	90.6	14.0	91.2 19.2
Ada-LSTM-BU	90.0	16.4	91.0 19.2
L.Ada-LSTM-CNN	90.0	16.5	91.0 19.3
MH-FC-CNN	89.9	14.5	91.1 20.1
L.MH-FC-CNN	89.7	14.2	91.0 20.1
MH-FC-BU	90.1	17.1	91.3 21.8
L.MH-FC-BU	90.1	17.0	91.3 21.9

Why there is no global improvement ?

Consider for a test sentence the minimal frequency of non-stop words counted over the training set:

dataset	Flick	r30K	MSCOCO2017					
average counts	LRP-IFT-improved	LRP-IFT-degraded	LRP-IFT-improved	LRP-IFT-degraded				
Ada-LSTM-CNN	26.1	35.2	123.7	134.0				
Ada-LSTM-BU	30.1	31.4	130.8	134.7				
MH-FC-CNN	29.3	31.4	124.4	132.8				
MH-FC-BU	29.3	29.7	118.7	139.0				
Ada-LSTM-CNN (ce)	34.4	28.5	124.4	137.0				
Ada-LSTM-BU (ce)	31.7	28.1	119.0	150.6				
MH-FC-CNN (ce)	29.4	30.6	128.0	142.6				
MH-FC-BU (ce)	22.6	35.9	124.7	148.5				

Tradeoff: LRP-finetuning improves on sentences with more rare words!

Case B: Improving test phase model accuracy in small-sample size training tasks (few-shot learning): Explanation-Guided Training for Cross-Domain Few-Shot Classification⁶ https://arxiv.org/abs/2007.08790

⁶J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020

Motivation:

- Improve model accuracy at test time by explanation-guided interventin during the training phase.
- Choose a low sample size setup with a somewhat challenging task.

Few-shot classification

- classify a query image into a set of support classes with few samples only
- difference to vanilla classification: no fixed set of test classes
- test classes given by example images from support classes
- support set classes are variable in the test/training setup
- classifier is a class-transferable similarity

Steps:

- compute prediction with original model p(f) based on feature maps f
- compute explanation scores $R(\cdot)$ for selected feature maps $f \longmapsto \boldsymbol{R}(f) \in [-1,+1]^d$
- re-weight selected feature maps:

 $f_{lrp} = (1 + \boldsymbol{R}(f)) \odot f$

train: optimize sum of two losses: original features and reweighted features

$$L = L(y, p(f)) + \lambda L(y, p(f_{lrp}))$$

- prediction time: use unweighted features p(f)

54

- observation: consistent improvement (3 models, several datasets).
- LRP-: explanation-guided training using LRP. T: transductive inference.

minilmagenet	1-shot	1-shot-T	5-shot	5-shot-T
RN	58.31±0.47%	61.52±0.58%	72.72±0.37%	73.64±0.40%
LRP-RN	60.06±0.47%	62.65±0.56%	73.63±0.37%	74.67±0.39%
CAN	64.66±0.48%	67.74±0.54%	79.61±0.33%	80.34±0.35%
LRP-CAN	$64.65{\pm}0.46\%$	$69.10{\pm}0.53\%$	$80.89{\pm}0.32\%$	82.56±0.33%
mini-CUB	1-shot	1-shot-T	5-shot	5-shot-T
RN	41.98±0.41%	42.52±0.48%	58.75±0.36%	59.10±0.42%
LRP-RN	$42.44{\pm}0.41\%$	42.88±0.48%	59.30±0.40%	59.22±0.42%
CAN	$44.91{\pm}0.41\%$	46.63±0.50%	63.09±0.39%	62.09±0.43%
LRP-CAN	$46.23{\pm}0.42\%$	$48.35{\pm}0.52\%$	$66.58{\pm}0.39\%$	66.57±0.43%
mini-Cars	1-shot	1-shot-T	5-shot	5-shot-T
RN	29.32±0.34%	28.56±0.37%	38.91±0.38%	37.45±0.40%
LRP-RN	29.65±0.33%	29.61±0.37%	39.19±0.38%	38.31±0.39%
CAN	31.44±0.35%	30.06±0.42%	41.46±0.37%	40.17±0.40%
LRP-CAN	32.66±0.46%	$\textbf{32.35}{\pm}\textbf{0.42\%}$	43.86±0.38%	42.57±0.42%
mini-Places	1-shot	1-shot-T	5-shot	5-shot-T
RN	50.87±0.48%	53.63±0.58%	66.47±0.41%	67.43±0.43%
LRP-RN	$50.59 {\pm} 0.46\%$	53.07±0.57%	66.90±0.40%	68.25±0.43%
CAN	$56.90{\pm}0.49\%$	60.70±0.58%	72.94±0.38%	74.44±0.41%
LRP-CAN	$56.96{\pm}0.48\%$	$61.60{\pm}0.58\%$	$\textbf{74.91}{\pm}\textbf{0.37\%}$	76.90±0.39%
mini-Plantae	1-shot	1-shot-T	5-shot	5-shot-T
RN	33.53±0.36%	33.69±0.42%	47.40±0.36%	46.51±0.40%
LRP-RN	34.80±0.37%	34.54±0.42%	48.09±0.35%	47.67±0.39%
CAN	36.57±0.37%	36.69±0.42%	50.45±0.36%	48.67±0.40%
LRP-CAN	38.23±0.45%	38.48±0.43%	53.25±0.36%	51.63±0.41%

- observation: consistent improvement (3 models, several datasets)

5-way 1-shot	minilmagenet	Cars	Places	CUB	Plantae
GNN	64.47±0.55%	30.97±0.37%	54.64±0.56%	46.76±0.50%	37.39±0.43%
LRP-GNN	$65.03{\pm}0.54\%$	$32.78{\pm}0.39\%$	$54.83{\pm}0.56\%$	$48.29{\pm}0.51\%$	37.49±0.43%
5-way 5-shot	minilmagenet	Cars	Places	CUB	Plantae
5-way 5-shot GNN	minilmagenet 80.74±0.41%	Cars 42.59±0.42%	Places 72.14±0.45%	CUB 63.91±0.47%	Plantae 54.52±0.44%

 combined with the feature transform from: (Cross-domain few-shot classification via learned feature-wise transformation, HY Tseng, HY Lee, JB Huang, MH Yang, ICLR 2020), it improves synergistically:

5-way 1-shot	Cars	Places	CUB	Plantae
RN	29.40±0.33%	48.05±0.46%	44.33±0.43%	34.57±0.38%
FT-RN	30.09±0.36%	48.12±0.45%	44.87±0.44%	35.53±0.39%
LRP-RN	30.00±0.32%	48.74±0.45%	45.64±0.42%	36.04±0.38%
LFT-RN	30.27±0.34%	48.07±0.46%	47.35±0.44%	35.54±0.38%
LFT-LRP-RN	$30.68{\pm}0.34\%$	$\textbf{50.19}{\pm}\textbf{0.47}\%$	$47.78{\pm}0.43\%$	$\textbf{36.58}{\pm}\textbf{0.40}\%$
5-way 5-shot	Cars	Places	CUB	Plantae
RN	40.01±0.37%	64.56±0.40%	62.50±0.39%	47.58±0.37%
FT-RN	40.52±0.40%	64.92±0.40%	61.87±0.39%	48.54±0.38%
LRP-RN	41.05±0.37%	66.08±0.40%	62.71±0.39%	48.78±0.37%
LFT-RN	41.51±0.39%	65.35±0.40%	64.11±0.39%	49.29±0.38%
LFT-LRP-RN	$42.38{\pm}0.40\%$	$66.23{\pm}0.40\%$	$64.62{\pm}0.39\%$	$50.50{\pm}0.39\%$

RelationNet. *FT* and *LFT* indicate the feature-wise transformation layer with fixed or trainable parameters.

 also works with other XAI methods such as gradient times input, see Table 2 / page 19 in https://arxiv.org/pdf/2203.08008.pdf

Case C: Identifying and Improving what universal counterfeit image detectors use: Discovering Transferable Forensic Features for CNN-generated Images Detection⁷

⁷K Chandrasegaran, NT Tran, A Binder, NM Cheung, ECCV 2022, https://keshik6.github.io/transferable-forensic-features/

- find relevant feature space channels
- How to validate the findings from explainability methods in feature spaces? Eyeballing heatmaps is not informative anymore.
- Analyze what do universal detectors for counterfeit images learn?

- obtain trained universal counterfeit image detector models (ResNet-50, EfficientNet-B0)
- Discover relevant feature channels

- compute LRP score for every feature map R[i, c, h, w] for image x_i
- aggregate it into a measure for a channel:

$$R_{i}[c] = \frac{\sum_{h,w} (R[i, c, h, w])_{+}}{\sum_{c,h,w} |R[i, c, h, w]|}$$

- average it over images x_i

$$R[c] = \frac{1}{n} \sum_{i=1}^{n} R_i[c]$$

 select top-k feature channels (k = 114 for ResNet, k = 27 for EffNet-B0) according to R[c] - Validate the discovered top-k relevant feature channels

Validate the discovered top-k relevant feature channels:

- measure accuracy drop when performing dropout of top-k relevant feature channels
- measure accuracy drop when performing dropout k randomly selected feature channels (perform 5 times, average accuracies)
- measure when performing dropout of bottom-k relevant feature channels
- compare accuracies

ResNet-50	ProGAN		ProGAN StyleGAN2		S	StyleGAN			BigGAN			CycleGAN			StarGAN			GauGAN			
k = 114	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN
baseline	100.	100.0	100.	99.1	95.5	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9	96.4
top-k	69.8	99.4	3.2	55.3	89.4	11.3	50.0	90.6	13.7	55.4	86.3	18.3	61.2	91.4	17.4	72.0	89.4	35.9	11.0	95.0	18.8
random-k	100.	99.9	96.1	98.6	89.4	96.9	98.7	91.4	96.1	88.0	79.4	85.0	96.6	81.0	96.2	97.0	88.0	91.7	98.7	91.9	97.1
low-k	100.	100.	100.	99.1	95.6	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9	96.4

EfficientNet-B0) ProGAN			StyleGAN2			StyleGAN			BigGAN			CycleGAN			:	StarGA	N	GauGAN			
k = 27	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	
baseline top-k	100. 50.0	100. 100.	100. 0.0	95.9 54.5	95.2 94.3	85.4 7.0	99.0 52.1	96.1 97.3	94.3 2.6	84.4 53.5	79.7 97.4	75.9 3.8	97.3 47.5	89.6 100.	93.0 0.0	96.0 50.0	92.8 100.	85.5 0.0	98.3 46.2	94.1 100.	94.4 0.0	
random-k	100.	99.9	100.	96.5	91.9	89.8	99.2	91.2	97.5	84.5	59.4	89.1	96.9	82.6	95.8	96.7	82.5	93.3	98.1	87.8	96.2	
low-k	100.	100.	100.	95.3	88.7	88.3	98.9	90.8	96.1	83.5	70.8	80.8	96.6	85.2	94.1	95.4	91.0	85.4	98.1	91.2	96.4	

- validation: top-k feature maps seem to be important

- Visualize the discovered relevant feature channels

Visualize the discovered relevant feature channels

- choose channels c belonging to top-k feature maps
- find (h*, w*) = argmax_{h,w} R_i[0, c, h, w]. Identify regions in input space corresponding to this (h*, w*)

What do we observe ???

Identifying what drives universal counterfeit image detectors

- Is color an important feature? Or still texture?

Predictive accuracy from the forward pass:

- Measure cross-GAN detector accuracy with color-ablated counterfeits:
- measure accuracy on colored and gray-scaled counterfeits.

Measure cross-GAN detector accuracy with gray-scaled counterfeits

Identifying what drives universal counterfeit image detectors

- small drop when using color ablation and the same GAN used for training (leftmost)
- big drop when using gray-scaling and unseen GANs
- color is important for cross-GAN generalization ?!

Measure cross-GAN detector accuracy with gray-scaled counterfeits: other dataset: BigGAN-real/fake, Effnet-B0

same observation!! Not limited to one dataset

 compare forward pass activation statistics: original vs gray-scaled images for relevant channels (Effnet-B0)

- Improve cross-GAN detector performance

Identifying what drives universal counterfeit image detectors

Improve cross-GAN detector performance

- retrain with 50% grayscaled counterfeits
- measure accuracy for colored vs grayscaled counterfeits

- Improvement!

The end of the talk

There is no one optimal explanation. LRP works in practice if used properly. Other methods are useful, too.

Credit: Hanabusa Itcho

Can we ablate channels in the generator to fool the detector?

Identifying what drives universal counterfeit image detectors

- Backproject LRP scores from the detector into the image, then into the GAN code which I had.
- yes, but resulting images look absurd!

different top-k values

ResNet-50	Pro	GAN	26	Styl	eGAN	12 29	Styl	leGA]	N 28	Bi	gGAI	N <u>6</u>	Сус	leGA	N 66	Sta	rGAI	N 11	Gau	IGAN	1 44
	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN
baseline	100.0	100.0	100.0	99.3	95.5	95.0	99.3	96.0	95.6	90.4	83.9	85.1	97.9	93.4	92.6	97.5	94.0	89.3	98.8	93.9	96.4
top-29	98.6	99.9	40.7	84.9	89.2	62.3	84.9	92.9	52.4	66.8	85.1	35.4	76.9	89.4	42.2	87.7	98.2	30.4	85.6	94.0	45.6
top-57	96.8	99.9	26.3	84.0	91.1	54.9	84.0	92.4	50.6	63.2	83.3	30.9	71.4	88.9	30.6	86.0	98.1	29.0	82.4	92.7	41.2
top-114	69.8	99.4	3.2	56.6	89.4	11.3	56.6	90.6	13.7	55.4	86.3	18.3	61.2	91.4	17.4	72.6	89.4	35.9	71.0	95.0	18.8
top-228	58.6	99.3	2.3	49.2	29.2	76.6	49.2	24.5	76.2	51.6	48.1	50.6	50.2	83.0	16.2	59.3	46.7	66.4	60.7	65.5	52.5
EfficientNe	t-B0	ProC	AN	26 5	StyleG	AN2	29 S	styleG	AN 2	8	BigG.	AN 6	C	cleG.	AN 66	5 St	arGA	N 11	Ga	uGAl	4 4

	· · · · ·		_								~							_			_
	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN	AP	Real	GAN
baseline	100.	100.	100.	99.0	95.2	85.4	99.0	96.1	94.3	84.4	79.7	75.9	97.3	89.6	93.0	96.0	92.8	85.5	98.3	94.1	94.4
top-5	91.8	99.9	14.5	68.9	75.1	53.7	68.9	74.6	38.3	57.4	74.6	38.3	78.9	85.5	54.4	82.4	94.2	40.8	70.7	97.4	13.9
top-27	50.0	100.	0.0	52.1	94.3	7.0	52.1	97.3	2.6	53.5	97.4	3.8	47.5	100.0	0.0	50.0	100.	0.0	46.2	100.	0.0
top-49	50.0	100.	0.0	50.0	100.	0.0	50.0	100.	0.0	50.0	100.	0.0	50.0	100.	0.0	50.0	100.	0.0	50.0	100.	0.0