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Talk Overview

1. The definition of explanation depends on the question

2. Shapley Values + Why for many data types XAl research does
not end with them

3. Decompositions |l — Linearizations: gradient methods,
smoothing, modified gradients including LRP

4. Examples for the value of explanation methods for model
improvement
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Approximate high-dimensional distances of a feature map

by low-dimensional embeddings E

Popular in deep learning: t-SNE
van der Maaten et al.:
https://lvdmaaten.github.io/tsne/examples/caltech101_tsne.jpg

— PCA projections (K. Pearson), Isomap (Tenenbaum et al. graph
defined by k-nearest neighbors and euclidean distances along edges),
many others

— CHAL: how to choose a low-dimensional approximation?
— CHAL: parameter sensitivity https://distill.pub/2016 /misread-tsne/

— good for exploration with follow up confirmation


https://lvdmaaten.github.io/tsne/examples/caltech101_tsne.jpg
https://distill.pub/2016/misread-tsne/

Understanding the model: DeepDream

DeepDream as an example of Activation Maximization

Credit: https://github.com/gordicaleksa/pytorch-deepdream

In what ways can one enhance it with more than esthetic value?


https://github.com/gordicaleksa/pytorch-deepdream

Understanding the model: Rank samples which maximize a

channel activation |7

— The top-3 images which maximally activate a particular channel of
layer 1ayer4.2.conv2 of a ResNet-50 after fine-tuning on Pascal VOC.

— The picture also shows an explanation which region in the image is
contributing to the activation of the channel (using LRP-max ).

Channel has learnt to detect bus views. Selection within the Pascal VOC
validation set.
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Understanding a single prediction: Prototype-based

learning

Find most similar samples that were used to arrive at a prediction
for a sample x.

— k-nearest neighbors

— Explain a prediction in terms of closest training samples



Understanding a prediction: Prototype-based learning |10

Explain a prediction in terms of closest training samples

This Looks Like That: Deep Learning for
Interpretable Image Recognition

Chaofan Chen” Oscar Li* Chaofan Tao
Duke University Duke University Duke University
cfchen@cs.duke.edu oscarli@alumni.duke.edu chaofan.taolduke.edu
Alina Jade Barnett Jonathan Su Cynthia Rudin
Duke University MIT Lincoln Laboratory' Duke University
abarnett@cs.duke.edu su@ll.mit.edu cynthia@cs.duke.edu

Credit: Chen et al. https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75- Paper.pdf


https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf
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Understanding a single prediction: Pertinent positives

Negatives

Explanations based on the Missing: Towards
Contrastive Explanations with Pertinent Negatives

Amit Dhurandhar* Pin-Yu Chen" Ronny Luss
IBM Research IBM Research IBM Research
Yorktown Heights, NY 10598 Yorktown Heights. NY 10598  Yorktown Heights, NY 10598
adhuran@us.ibm.com pin-yu.chen@ibm. com Tluss@us.ibm.com
Chun-Chen Tu Paishun Ting Karthikeyan Shanmugam
University of Michi University of Michi IBM Research
Ann Arbor, MI 48109 Ann Arbor, MI 48109 Yorktown Heights, NY 10598
timtu@umich.edu paishun@umich.edu karthikeyan.shanmigam2@ibm. com
Payel Das
IBM Research

Yorktown Heights, NY 10598
daspaus.ibm. com

Credit: https://proceedings.neurips.cc/paper/2018 /file/c5ff2543b53f4cc0ad3819a36752467b- Paper.pdf


https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf

Understanding a single prediction: Pertinent positives and

Negatives 113

Pertinent positive: what to retain from a sample?
Pertinent negative: what to change so that prediction switches?

Orig Pred CEM PP CEM PN

SISIS
HEe

Pertinent positive: cyan, pertinent negative:

Credit: https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b- Paper.pdf

— CHAL: how to delete/replace information? Result is
plausible/outlier?

— many different PP/PN — how to integrate them?


https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf

A few topics in explaining models
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A more narrow scope: explaining predictions on a single

sample by decomposition
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A more narrow scope: explaining predictions on a single

sample by decomposition

— case of images: compute a score rqg(x) for every input dimension d

of the input sample x = (x1,...,Xd, ..., XD)
D
F(x)~ Y ra(x) (1)
d=1

decomposition

— objective function is left open

|16



Explanations by decomposition of a single sample

What is a good explanation within the set of decomposition
approaches?

— There a theoretically optimal approach!

2. Shapley values



Shapley values

The Setup:
— Have function f, and a point to be explained x = (xy,...,xq4).
— We can evaluate f on subsets xs = {x;,, X;,, X, - . . [Vk : ix € S} of

features from x.

Shapley value

then the Shapley value is defined as:

f(XSU{j}) — f(xs)

oi(F ) = )

d—1
SC{L,dP\ (i} (7))

Game Theory: S is set of players playing a game with outcome f(xs).
J a member which can join the set with outcome f(xsyu(j})



Shapley values

Its interpretation?

— Have function f, and a point to be explained x = (xq, ..., x4).

— We can evaluate f on subsets xs = {x;,, Xj,, X, - . . [Vk : ix € S} of
features from x.

— then the Shapley value is defined as:

1 f(xsugjy) — f(xs)
O(f.x) = > ““3,_1) 3)
SC{L dh\ U} (s
1 Z Z differential contrib of j to set S
B number of sets of same size |S]

1
MUMEEE k>1 sets S without j,|S|=k
(4)




Shapley values

We have interpreted SHAP.
How to categorize this approach?

1 f(xsugy) — f(xs)
Bi(F,x) =~ = (5)
SCA{1,....d\{j} 5]
1 Z Z differential contrib of j to set S
N number of sets of same size |S|

numsets
k>1sets S without j,|S|=k

(6)



Shapley values

We have interpreted SHAP.
How to categorize this approach?

f(xsugy) — f(xs)

1
¢j(f7 x) = d (d—l) (5)
SC{1LdN\{j} 15|
1 Z Z differential contrib of j to set S
" numsets number of sets of same size |S]

k>1sets S without j,|S|=k

(6)

Combinatorially exhaustive occlusion differences for j
differential values: sets with player j, sets without j
(cf. Petliuk et al. RISE https://arxiv.org/abs/1806.07421)


https://arxiv.org/abs/1806.07421

Shapley values

Favourable theoretical properties:

— does not make a difference, zero Shapley-value
VS fxsugy) = fxs) = ¢(f,x) =0 ()
— value-equal pair of features j, k, identical Shapley-value:
VS fxsugy) = Flxsuy) = ¢i(f,x) = eu(f,x)  (8)
— Efficiency:

d
> 6i(f.x) = £(x) = Ex[f(X)] (9)
j=1
decomposition of f(x)
distributes the difference between function value f(x) and its
expectation Ex[f(X)] onto all dimensions in an equal way (not
shown here!)

1Grabisch https:/ /www.worldscientific.com /doi/abs/10.1142/50218488597000440


https://www.worldscientific.com/doi/abs/10.1142/S0218488597000440

Challenges of Shapley values in practice

We can evaluate f on subsets xs = {xj,, Xj,, Xis, - - . [Vk : ix € S} of
features from x. — QOutside of tabular data types this is a very
strong assumption.

— How to remove a region in an image, a language sentence ?
— How to remove an interval of a data point being a time series ?

— is S, SU{j} plausible or outlier (bonds and molecules) ?

Dimensions x4 of a data sample x <> Players in a game 7

No optimality guarantee when
— applicability assumptions do not hold well

— one has to use approximations (e.g. MC)




What other methods exist for data types where Shapley
assumptions do not hold well?

3. Linearizations



Linearizations (Gradient, Gradient X Input, Integrated Gradient, LIME,

Grad-CAM ) |24

— Starting point was: f(x) ~ Z7=1 rq4(x) f is non-linear now
— Taylor Expansion (3rd order)
f(x) = f(x)
+ %Df(xo)[x — Xo]
+ %sz(xo)[x — X0, X — Xo]

1
+ §D3f(xo)[x — Xg, X — Xg, X — Xo] + O(||x — xo||4) (10)

Df(Xo) = (aa—);(Xo), d= 1, ey D) = Vf(Xo)

2
D*f(x0) = ( o°f (xo),d,ezl,...,D>

OXgXe
O3f

OXdgXeXe

D*f(x0) = ( (x0),c,dye=1,..., D)



Linearizations (Gradient, Gradient X Input, Integrated Gradient

Grad-CAM )

— Starting point was: f(x) = 2721 ra(x) f is non-linear now
— Taylor Expansion up to first order:
f(x) = f(xo) + Vf(x) - (x —x0) (11)

= f(x0) + Z %'XO(Xd — Xo,d) (12)
d

— use as explanation:

of
ra(x) = 8_Xd|X0(Xd — X0,d) (13)



Linearizations

— Gradient x Input
— Integrated Gradient
- LIME

- Grad-CAM

- LRP



Explanation Methods: Gradient X Input

Use as explanation:
f'
ra(x) = ?(_(X)Xd’ R=(rq,d=1,...,D)=Vf(x) x
d

(+) derivation via global Taylor decomposition for a point xp orthogonal
to the gradient (Vf(x) - xo = 0) in the point x to be explained.

f(x0) = F(x) + VF(x) - (x0 — x) + Ollx = x0[*)
= f(x) = f(x) + VF(x) - (x - xo)
= f(x0) + VFf(x) - x = Vf(x) - x
=0
f(xo) is a bias term, independent of any dimension

(=) can be noisy for deep ReLU-networks due to gradient shattering:



Explanation Methods: Gradient X Input

The noiseness of gradient x input and related methods for deep
RelLU-networks:

Credit: https://arxiv.org/pdf/1706.03825.pdf

Gradient Shattering Effect
— Montufar et al. 2014 https://papers.nips.cc/paper/
5422-on-the-number-of-linear-regions-of-deep-neural-networks. pdf.
— Balduzzi et al. 2017
http://proceedings.mlr.press/v70/balduzzil7b/balduzzil7b.pdf.


https://arxiv.org/pdf/1706.03825.pdf
https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://proceedings.mlr.press/v70/balduzzi17b/balduzzi17b.pdf

Explanation Methods: Integrated Gradient

Sundararajan et al., ICML 2017,
https://dl.acm.org/doi/10.5555/3305890.3306024

A heuristic very similar to the gradient x input:

I’d(X) (Xd_xd ) Za |z x(0)4 £ (x—x(0))

Averages over partial derivatives
along multiple points

x© 4 £(x — x9) along a path
from x to x.

Noisy heatmaps in ReLU networks
due to gradient shattering.
Averaging gradients to smoothe
the noise.

IG gets better with many roots
used (+ slows down).

‘ High Impact

Low Impact
[ P

igh (1o

Credit:

Gradient Grad\enl \mage

https://arxiv.org/pdf/1706.03825.pdf



https://dl.acm.org/doi/10.5555/3305890.3306024
https://arxiv.org/pdf/1706.03825.pdf

Explanation Methods: Grad-CAM

Selvaraju et al. https://arxiv.org/abs/1610.02391

k= zZZ DAL (14)

k
Lj; = ReLU(Gj) (16)
It is almost gradient x input in feature space. Three differences:
smoothing of the gradient in feature space aAk by spatial

averaging (cf. Integrated Gradients)
average over all channels ), aiAfj-

retain positive part only (cf. Guided Backpropagation)


https://arxiv.org/abs/1610.02391

Explanation Methods: LRP

— Divide and conquer: decompose network in layers

1. decompose
decision function
2. explain
subfunctions

s
1
& ’weva"te 3. aggregate | Q
& of : P
N J explanations -
o

credit: W. Samek
— Taylor approximation per layer/neuron
— easier to find roots for one layer

— robustness to gradient shattering



Explanation Methods: LRP

Explanation —

cat

O rooster
(14+1)

\ Rj

dog

'alpha-beta LRP rule (Bach et al. 2015) I

'
- . 'l cwig)* p row)” 1+1) |
Theoretical interpretation R = ICE :.‘L.'f-wf,,r +4- Z,{)‘(-J.‘»L‘w).u)‘ )-‘?S e
Deep Taylor Decomposition H g=1 H
(Mentavon et al., 2017) 1 where o + [ =

credit: W. Samek

LRP has the same flow along graphs as the gradient.



Backpropagation: Chainrule along a graph

dy _ Oz dy 4 Oz dy ; ivati
== gt o partial derivatives flow along the edges.




Relevance distribution for one neuron: example [3-rule

forward pass: y, = g <Z Wik X; + b)

backward: have computed already the relevance Ry for the neuron output v,
LRP backward: R, x(x) = ReM;. 1 (w, x)

(wikxi) +
=0: M., = . a7
5 o S (Wi )+



Relevance distribution for one neuron: example [3-rule

forward pass: y, = g <Z Wik X; + b)

backward: have computed already the relevance Ry for the neuron output v,
LRP backward: R, x(x) = ReM;. 1 (w, x)

fraction of positive part of input dim x; relative to all inputs x;/

(Wikxi)+

—0: M., = kXDt
b o S (Wi )y



Relevance distribution for one neuron: example §-rule

forward pass: v, = g <Z Wik Xj + b)

backward: have computed already the relevance Ry for the neuron output v,
LRP backward: R, x(x) = ReM;. 1 (w, x)
fraction of positive part of input dim x; relative to all inputs x;/
(wixi)+
B=0: M.y = =
> (Wirkxin) 4

B>0: M. =(1+5) Z(,val)llih - Z(,'EV':’;I)/(;(L/)_

positive contributions negative contributions




Relevance distribution for one neuron: example [3-rule

given: have computed already Ry as relevance of neuron output
Vi =8> wikx; + b)
i

Ri«—k(x) = RkMiek(W, X)

(wikxi)+ (wikxi)—
Mix =1+ —~
e =018 > (Winkxir ) + > i (Wirkxi ) —
positive contributions negative contributions

— [ controls ratio of negative to total relevance = %

— negative to total relevance — fixed independent of neuron inputs x; (!).

— bounded relevance scale: |Ri«| < (1 + B)|Rk| for smoothness of
explanations

— compare to gradient clipping for batchnorm-free training, e.g. Brock et al
https://arxiv.org/pdf/2102.06171.pdf


https://arxiv.org/pdf/2102.06171.pdf

A few topics in explaining models

My method is the best!! Am | one of them?

Credit: Hanabusa Itcho



The value of explanations (not just LRP...)

A. Image captioning: LRP detects words induced by textual
correlations unsupported by image content?

B. Improving test phase model accuracy in small-sample size
training tasks (few-shot learning):
LRP-guided training to improve cross-domain few-shot
learning3

C. ldentifying and Improving what universal counterfeit image
detectors use:
Discovering Transferable Forensic Features for CNN-generated
Images Detection*

2J Sun, S Lapuschkin, W Samek, A Binder, Information Fusion, 2021
3J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020
‘K Chandrasegaran, NT Tran, A Binder, NM Cheung, ECCV 2022



The value of explanations (not just LRP...)

Case A: Image captioning: LRP detects words
induced by textual correlations unsupported by
image content®

— starting point: wanted to compare attention vs backward
explanation

— relevance: e.g. medical image to text model: does it look at
the X-ray to make a prediction?

5J Sun, S Lapuschkin, W Samek, A Binder, Information Fusion, 2021



Detecting structure-induced predictions — image captioning

case 139

— Words are generated often by recurrent neural networks:
word,+1 = RNN_Attention(Image,words, wordy,...,word,)

— Models use attention usually

o | 2.Man: a
,\g \; : \I | 3.ls: aman
) an P 4.Playing:  amanis
] 5.Tennis: aman is playing
{ 11 Afm 6.0n: man - playing tennis
g tei:‘ p 7.A: . ?s playing tenn.is on
8Tennis: 2 is playing tennis on a
AT\ T % 9.Court: a is tennis on - tennis
a | < L
: tennis court --- 0025



Detecting structure-induced predictions — image captioning

case | 40

Many image captioning models have a principled structure:
take a word embedding Ep(w;—1) and a CNN feature map I of an

image as inputs, process them by an RNN:

xt = [Em(we-1), 1]
hy, m; = LSTM(Xt, h:_q, mt—l)

An attention mechanism Att(-) uses h; and [ to obtain a spatially
reweighted context c¢; for word prediction.

Ct = Att(ht, my, ’)
y: = Predictor(h;, c;)



case

Detecting structure-induced predictions — image captioning

|41

How may Att(-) look like?
For adaptive attention: Let m; be the LSTM memory cell, then:

st = o(Wix; + Whhi_1) ® tanh(my)
a = w,tanh(IW, + W, h,)
b = w, tanh(W;s; + W;h,))

a; = softmax(a) € R™

Bt = softmax([a, b])(n,+1) € R!

Cy = (1 — /Bt) Z:vzl agk)l(k) + /Btst
Ct = Att(ht, my, I)



Detecting structure-induced predictions — image captioning

case |42

How may Att(-) look like?
For multi-head transformer attention:
QKT

k
Q:=h,K:=IW,V  =IW,

c: = Att(h,, 1) = (VO v(K)

V() = softmax( ) 4 v

Observation of a common structure: weight (depends on features)
times concatenated features



Detecting structure-induced predictions — image captioning

case |43

Attention-weighted features share a common structure
f= Z w;(v)v;
i
apply signal takes all idea (L Arras et al. ACL 2019):
— do not propagate relevance through weights w;(v) to v

— propagate relevance only to v; directly, by interpreting it as a
weighted sum of v; with static weights w;:

R(F) "5 (R(v)}

Combine LSTM-explanation idea and this idea — have explanations for
image captioning



Detecting structure-induced predictions — image captioning

case | 44

- ) Reis(ht)
he = o, © tanh(c;)
Ran(he) =) H‘/;(CL) LRP: signal takes all eg. from n.Linearlh_t)
Riy(ci) + R (er) = Rauler)
Ri(hy—1) Rat)Y Buon(i) — Words are generated often by
— all\'lt 4100
-~ o= froan o - recurrent neural networks:
[Ct—l ht—l] Ran(e) W5 (RU @ o), Rlag,))
' R ) 5 ) s | | [Ces D] word,y1 = f(Image,wordy,
——
e = 0(200) @ tanh(zag) WOI’CIQ,...,WOI’dn)
LRP: signal takes all — =u,_ - L. .
Rifer1) Rap) = R(o(z0) © w) 5 R(w) R () — Two principles when using

) LRP for RNNs:
" forward pass
S —

relevance
backward pass

(1) signal takes all in terms like w = 0(zg,+) ® tanh(z,:) do not distribute
relevance on gates z; ;. Only onto signal terms z; ¢:

R(w) = (R(zg,t); R(25,¢) ) := (0, R(2s.1))

(2) +: use LRP-¢, other linear operations: use LRP-¢, 8, v



Detecting structure-induced predictions — image captioning

case | 45

chairand a television A plack and white cat standing next to a person

<
(e) i (d) (f) / 2
/A man sitting on a chair in front ofa TV A close up of a person on a cellphone A man in a suit and tie is speaking into a
microphone
¥ r
P & =
(¥ W 2

(8) (h) (i)

P ®, &fs

b 'y g/‘\
i )
A man holding a banana in his hand Aman in a red striped shirt is A'man in a black shirt is holding a microphone

looking at a cellphone

— Forward pass spatial attention cannot perform this task



Detecting structure-induced predictions — image captioning

case

Debias by explaining object words. Use explanations to reweight
CNN features in training.

If the prediction for one step is made by an fc layer using ¢;, h; as
Pu = fc(Ct + ht),

then during training compute the normalized relevances
R(c) €[0,2], R(h:) € [0,2]

use them as element-weise weighting and optimize:
Pw = fc( ’A?(Ct) [O) Ct + i\?(ht) [O) ht )
—_———— ——
weighted feat weighted feat
L=\ Lce(pmy) +(1 - )\)Lce(pway)
—_———
usual loss

wher L is the usual cross entropy loss, and y are the ground truth
labels

Able to measure the quality of debiasing

| 46




Detecting structure-induced predictions — image captioning

case | 47

During training: reweight CNN features using explanation scores.
Improves prediction on most frequent object words — by reducing
hallucinating them.

Table: (mAP) of the predicted 25 most frequent object words. (ce):
models are trained only with cross-entropy loss. The other models are
finetuned with SCST for the non-differentiable CIDEr score. BU and
CNN denote Faster-RCNN features and CNN features. Higher mAP
means less object hallucination.

dataset Flickr30K MSCOCO02017

mAP baseline LRP-IFT  baseline LRP-IFT
Ada-LSTM-CNN 52.95 54.47 72.29 73.85
Ada-LSTM-BU 63.84 64.61 78.57 80.55
MH-FC-CNN 55.98 57.71 73.74 73.42
MH-FC-BU 64.46 64.98 78.10 77.71

" Ada-LSTM-CNN (ce) ~ ~ 5853 ~ ~ 60.80 ~ 7365  74.00

Ada-LSTM-BU (ce) 60.70 65.01 79.06 79.80
MH-FC-CNN (ce) 55.50 59.23 77.15 76.87

MH-FC-BU (ce) 64.08 66.10 81.02 81.16




Detecting structure-induced predictions — image captioning

case |48

Little change on the set of all words:

Table: The performance of the Ada-LSTM model and MH-FC model with
or without LRP-IFT on the test set of Flickr30K and MSCOCO02017
datasets. L. denotes LRP-inference fine-tuned models. BU and CNN
denote bottom-up features and CNN features. Measures: Fg: Fgegrt S:

SPICE.

dataset Flickr30K MSCOCO02017

Fg S Fg S
Ada-LSTM-CNN 90.6 13.9 91.7 19.5
L.Ada-LSTM-CNN  90.6 14.0 91.2 19.2
Ada-LSTM-BU 90.0 16.4 91.0 19.2
L.Ada-LSTM-CNN  90.0 16.5 91.0 19.3
MH-FC-CNN 89.9 14.5 91.1 20.1
L.MH-FC-CNN 89.7 142 91.0 20.1
MH-FC-BU 90.1 17.1 91.3 21.8

L.MH-FC-BU 90.1 17.0 91.3 21.9




Detecting structure-induced predictions — image captioning

case | 49

Why there is no global improvement ?

Consider for a test sentence the minimal frequency of non-stop words
counted over the training set:

dataset Flickr30K MSCOCO2017

average counts LRP-IFT-improved ~ LRP-IFT-degraded = LRP-IFT-improved  LRP-IFT-degraded
Ada-LSTM-CNN 26.1 352 123.7 134.0
Ada-LSTM-BU 30.1 314 130.8 134.7
MH-FC-CNN 293 314 124.4 132.8
MH-FC-BU 293 29.7 118.7 139.0

T Ada-LSTM-CNN(ce)” ~ ~ ~ 344~~~ 77 T 2857 T T T T T 144 T T T T T U360 T 77

Ada-LSTM-BU (ce) 317 28.1 119.0 150.6
MH-FC-CNN (ce) 294 306 128.0 142.6
MH-FC-BU (ce) 22.6 359 124.7 148.5

Tradeoff: LRP-finetuning improves on sentences with more rare words!



The value of explanations (not just LRP...)

Case B: Improving test phase model accuracy in
small-sample size training tasks (few-shot learning):
Explanation-Guided Training for Cross-Domain
Few-Shot Classification®
https://arxiv.org/abs/2007.08790

©J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020


https://arxiv.org/abs/2007.08790

Explanation-Guided Training for Cross-Domain Few-Shot
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Motivation:

— Improve model accuracy at test time by explanation-guided
interventin during the training phase.

— Choose a low sample size setup with a somewhat challenging
task.



Explanation-Guided Training for Cross-Domain Few-Shot

Classification

Few-shot classification

classify a query image into a
set of support classes with
few samples only

difference to vanilla
classification: no fixed set of
test classes

test classes given by example
images from support classes

support set classes are
variable in the test/training
setup

classifier is a class-transferable
similarity

feature

classifier

Wwirp O f;
g

|52

Pirp

processing
fa
Q

Explain YEE ?

LRP
R (classifier)
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Steps:

— compute prediction with s P
original model p(f) based on ,
feature maps f [ L Gl rEm

processing ‘ EEE

— compute explanation scores Wi Ofp | Piry

fa ; ;
R(-) for selected feature maps 0

Explain
fr R(f) € [-1, +1)¢ ! T

- “
— re-weight selected feature =
maps:

firp = (1+ R(F)) O f

— train: optimize sum of two losses: original features and reweighted
features

L= L(y, p(F)) + AL(y, p(frp))

— prediction time: use unweighted features p(f)



Explanation-Guided Training for Cross-Domain Few-Shot

Classification | 54

— observation: consistent improvement (3 models, several datasets).

LRP-: explanation-guided training using LRP. T: transductive inference.

minil et 1-shot 1-shot-T 5-shot 5-shot-T
RN 58.31+£0.47%  61.52+0.58%  72.72+0.37% 73.64+0.40%
LRP-RN 60.06+0.47% 62.65+0.56% 73.63+0.37% 74.67+0.39%
CAN 64.66+-0.48% 67.74+0.54%  79.61+0.33% 80.34+0.35%
LRP-CAN 64.65+0.46% 69.10+0.53% 80.89+0.32% 82.56+0.33%
mini-CUB 1-shot 1-shot-T 5-shot 5-shot-T
RN 41.98+0.41%  42.52+0.48%  58.75+0.36% 59.10+0.42%
LRP-RN 42.44+0.41% 42.88+0.48% 59.30+0.40% 59.22+0.42%
CAN 44.91+0.41%  46.63+0.50%  63.09+0.39%  62.09+0.43%
LRP-CAN 46.23+0.42% 48.35+0.52% 66.58+0.39% 66.57+0.43%
mini-Cars 1-shot 1-shot-T 5-shot 5-shot-T
RN 20.324+0.34%  28.56+0.37%  38.91+0.38%  37.45+0.40%
LRP-RN 29.65+0.33% 29.61+0.37% 39.19+0.38% 38.31+0.39%
CAN 31.44+0.35%  30.06+£0.42%  41.46+0.37% 40.17+0.40%
LRP-CAN 32.66+0.46% 32.35+0.42% 43.86+0.38% 42.57+0.42%
mini-Places 1-shot 1-shot-T 5-shot 5-shot-T
RN 50.87+0.48% 53.63+0.58% 66.47+0.41% 67.43+0.43%
LRP-RN 50.59-£0.46%  53.07+0.57% 66.90+0.40% 68.25+0.43%
CAN 56.90£0.49%  60.70+0.58%  72.94+0.38% 74.44+0.41%
LRP-CAN 56.96+0.48% 61.60+0.58% 74.91+0.37% 76.90+0.39%
mini-Plantae 1-shot 1-shot-T 5-shot 5-shot-T
RN 33.563+£0.36%  33.69+0.42%  47.40+0.36%  46.51+0.40%
LRP-RN 34.80+0.37% 34.54+0.42% 48.09+0.35% 47.67+0.39%
CAN 36.57+0.37%  36.69+0.42%  50.45+0.36% 48.67+0.40%

LRP-CAN 38.23+0.45% 38.48+0.43% 53.25+0.36% 51.63+0.41%




Explanation-Guided Training for Cross-Domain Few-Shot
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— observation: consistent improvement (3 models, several datasets)

Cars Places CcuB Plantae
30.97+0.37%  54.64+0.56%  46.76+0.50%  37.39+0.43%
LRP-GNN  65.03+0.54% 32.78+0.39% 54.83+£0.56% 48.29+0.51% 37.49+0.43%
Cars Places CcuB Plantae
72.14+0.45%  63.91+0.47% 54.52+0.44%
64.44+0.48%  54.46+0.46%

5-way 1-shot ~ minil
GNN 64.47+0.55%

5-way 5-shot  minil
GNN 80.74+0.41%  42.59+0.42%
LRP-GNN  82.03+0.40% 46.20+0.46% 74.45+0.47%
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— combined with the feature
transform from: (Cross-domain
few-shot classification via learned
feature-wise transformation,

HY Tseng, HY Lee, JB Huang, MH Qe L
Yang, ICLR 2020), it improves
synergistically:

feature
processing

classifier

FExplain uEE

o
LRP
RU» '_{ (classifier) 1

5-way 1-shot Cars Places CUB Plantae
RN 29.40+0.33%  48.05+0.46%  44.33+0.43%  34.57+0.38%
FT-RN 30.09+0.36%  48.124+0.45%  44.87+0.44%  35.53+0.39%
LRP-RN 30.00+0.32%  48.74+0.45%  45.64+0.42%  36.04+0.38%
LFT-RN 30.27+0.34%  48.07+0.46%  47.35+0.44%  35.54+0.38%
LFT-LRP-RN  30.68+0.34% 50.19+0.47% 47.78+0.43% 36.58+0.40%

5-way 5-shot Cars Places CUB Plantae
RN 40.01+0.37%  64.56+0.40%  62.50+0.39%  47.58+0.37%
FT-RN 40.52+0.40%  64.92+0.40%  61.87+0.39%  48.54+0.38%
LRP-RN 41.05+0.37%  66.08+0.40%  62.71+0.39%  48.78+0.37%
LFT-RN 415140.39%  65.354+0.40%  64.11+0.39%  49.29+0.38%
LFT-LRP-RN  42.38+0.40% 66.23+0.40% 64.62+-0.39% 50.50+-0.39%

RelationNet. FT and LFT indicate the feature-wise transformation layer with

fixed or trainable parameters.
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— also works with other XAl methods such as gradient times
input, see Table 2 / page 19 in
https://arxiv.org/pdf/2203.08008.pdf


https://arxiv.org/pdf/2203.08008.pdf

The value of explanations (not just LRP...)

Case C: Identifying and Improving what universal
counterfeit image detectors use:
Discovering Transferable Forensic Features for
CNN-generated Images Detection’

K Chandrasegaran, NT Tran, A Binder, NM Cheung, ECCV 2022,
https://keshik6.github.io/transferable-forensic-features/


https://keshik6.github.io/transferable-forensic-features/

|dentifying what drives universal counterfeit image

detectors

— find relevant feature space channels

- How to validate the findings from explainability methods in
feature spaces? Eyeballing heatmaps is not informative
anymore.

— Analyze what do universal detectors for counterfeit images
learn?



|dentifying what drives universal counterfeit image

detectors

— obtain trained universal counterfeit image detector models
(ResNet-50, EfficientNet-B0)

— Discover relevant feature channels



|dentifying what drives universal counterfeit image

detectors

— compute LRP score for every feature map R[i, c, h, w] for image x;
— aggregate it into a measure for a channel:

Zh,w(R[i7 c,h, W])+
Zc,h,w |R[i7 G, h7 W]|

R,'[C] =

— average it over images Xx;
Rld = 23" R

oo i=1 I

— select top-k feature channels (k = 114 for ResNet, k = 27 for
EffNet-B0) according to R[c]



|dentifying what drives universal counterfeit image

detectors

— Validate the discovered top-k relevant feature channels



|dentifying what drives universal counterfeit image

detectors

Validate the discovered top-k relevant feature channels:

measure accuracy drop when performing dropout of top-k relevant
feature channels

measure accuracy drop when performing dropout k randomly
selected feature channels (perform 5 times, average accuracies)

measure when performing dropout of bottom-k relevant feature
channels

compare accu racies



|dentifying what drives universal counterfeit image

detectors

ResNet-50 ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
k=114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN 6 AP Real GAN AP Real GAN
baseline 100. 100.0 100. [ 991 955 950 | 993 960 956 | 90.4 839 851 | 979 934 926 | 975 940 893 | 988 939 96.4

top-k 69.8 99.4 3.2 (553 804 113 (56.6 90.6 13.7 |55.4 86.3 183 [61.2 91.4 17.4 (726 89.4 359 (71.0 950 1838
random-k | 100. 999 96.1 | 986 894 969 | 987 914 961 880 794 850 |96.6 810 962 | 970 880 917 |[987 919 971
low-k 100. 100. 100. [ 991 956 950 | 993 960 956 | 90.4 839 851 | 979 934 926 | 975 940 893 | 988 939 96.4

EfficientNet-B0 ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN
k=27 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN
baseline 100. 100. 100. [ 959 952 854 | 99.0 961 943 | 844 797 759 | 973 896 930 | 960 928 855|983 941 944
top-k 50.0 100. 0.0 |545 943 7.0 |521 973 2.6 |535 97.4 38 |475 100. 0.0 |50.0 100. 0.0 |46.2 100. 0.0
random-k 100. 999 100. | 965 919 89.8 |99.2 912 975 | 845 594 891 | 969 826 958 967 825 933|981 878 962
low-k 100. 100. 100. | 953 887 883 | 989 908 96.1 | 835 70.8 808 | 96.6 852 941 | 954 910 854 | 981 912 964

— validation: top-k feature maps seem to be important



|dentifying what drives universal counterfeit image

detectors

— Visualize the discovered relevant feature channels



|dentifying what drives universal counterfeit image

detectors

Visualize the discovered relevant feature channels
— choose channels ¢ belonging to top-k feature maps
- find (h*, w*) = argmaxy , Ri[0, c, h, w]. ldentify regions in
input space corresponding to this (h*, w*)

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN StarGAN [11] GauGAN [44]

FEE IR L 80 WS T - e
N NN STy | ™ e
What do we observe 777



|dentifying what drives universal counterfeit image

detectors

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN StarGAN [1I] GauGAN [44]

% O
LOL

Colorfull

— s color an important feature? Or still texture?



|dentifying what drives universal counterfeit image

detectors

Predictive accuracy from the forward pass:

— Measure cross-GAN detector accuracy with color-ablated
counterfeits:

— measure accuracy on colored and gray-scaled counterfeits.



|dentifying what drives universal counterfeit image

detectors

Measure cross-GAN detector accuracy with gray-scaled counterfeits

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN CycleGAN StarGAN [II] GauGAN [4d]

vl W T o . _
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Z o drap, z o) droj z o) arop; o draj =

E E ia E 3
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| I == | | =5

— ]
T | T
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|dentifying what drives universal counterfeit image

detectors

Probability (%)

Probability (%)

GauGAN [44]

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN CycleGAN StarGAN [11]

nf—— o o] T i
wl — R p ! | ! - -
£ 98.9% 5 99,804 5 92,390 & I | ) = £
al T dropy | 2 e dra Zw aron,—| £ ) dro e %
P Rt Rt Rt Z k] i
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small drop when using color ablation and the same GAN
training (leftmost)

big drop when using gray-scaling and unseen GANs

color is important for cross-GAN generalization ?!

used for



|dentifying what drives universal counterfeit image

detectors

Measure cross-GAN detector accuracy with gray-scaled
counterfeits: other dataset: BigGAN-real/fake, Effnet-B0

ProGAN [EB] StyleGAN2 [EI] StyleGAN [Z§] BigGAN [B] CyecleGAN [B8] StarGAN [I[I] GauGAN [Ed)

IR AR

Baseline Grayscale Baseline Grayscale Bascline Grayseale Baseliue Grapscale Bareline Grayscale Baseline Grayseale

:
g
H

Probability (%)

Prabability (%)

S
Prabability %)

Prebubhly (%)
Froba m:; o)
Probubitity (%)
Prababliity (%)

— same observation!! Not limited to one dataset



|dentifying what drives universal counterfeit image

detectors

— compare forward pass activation statistics: original vs
gray-scaled images for relevant channels (Effnet-B0)

ProGAN [Z0] StyleGAN2 [ZH St ICA.NEE BigGAN [ CycleGAN [0 StarGAN [I] c cANm

,Fﬁi—ml F““"“W i |Mﬁ i j W »«

meptil et wesalietivatis mepaladiaien estbadivtivs et maalismtaties sl astiation

= DBaseline Grayscale



|dentifying what drives universal counterfeit image

detectors

— Improve cross-GAN detector performance



|dentifying what drives universal counterfeit image

detectors

Improve cross-GAN detector performance
— retrain with 50% grayscaled counterfeits
— measure accuracy for colored vs grayscaled counterfeits

ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN [[I] GauGAN E

= == p— ‘
- - W B - - e - ol
ki & £ £ £ £
a2 2 2 -] | dro) 2 drop
) 5. -y fd 34 -y
= = £ H < £
y
¥
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B B 5 £ B Fl|e
e z o ol = ol = 3| = o 0 Z sl 0.1
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Zu i I 3 Z
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Baseline Grayscals jaseline Grayscale Baseline  Grayscals aseline Grayscale Jaseline Grayscale Baseline Grayscals aseline Grayscal

— Improvement!



There is no one optimal explanation. LRP works in practice if used
properly. Other methods are useful, too.

Credit: Hanabusa ltcho



|dentifying what drives universal counterfeit image

detectors

Can we ablate channels in the generator to fool the detector?



|dentifying what drives universal counterfeit image

detectors

— Backproject LRP scores from the detector into the image, then into
the GAN code which | had.

— yes, but resulting images look absurd!

5% LRP highest scoring channels 5% random channels
1.0 & g .000 - &5 %
.995 4 o
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|dentifying what drives universal counterfeit image

detectors

different top-k values

ResNet-50| ProGAN StyleGAN2 [2] StyleGAN [I¥] BigGAN CycleGAN StarGAN [[I] GauGAN [11]
AP Real GAN|AP Real GAN|AP Real GAN| AP Real GAN| AP Real GAN|AP Real GAN| AP Real GAN

baseline  |100.0 100.0 100.0 |99.3 955 95.0 [99.3 96.0 956 [90.4 83.9 851 |97.9 934 926 [97.5 940 B89.3 |988 939 9G4
top-29  |98.6 999 40.7 |84.9 892 62.3 |84.9 920 52.4 |66.8 55.1 35.4 |76.9 59.4 42.2 |87.7 932 30.4 |85.6 940 45.6
top-57  |96.8 999 26.3 |84.0 91.1 54.9 |84.0 924 50.6 |63.2 83.3 30.9 |T1.4 559 30.6 |86.0 98.1 29.0 |82.4 92.7 41.2
top-114  [69.8 994 3.2 |56.6 894 11.3 |56.6 90.G 13.7 |55.4 86.3 18.3 [61.2 91.4 17.4 |72.6 894 35.9 |T1.0 950 18.8
top-228  |58.6 99.3 2.3 |49.2 202 T6.6 |49.2 245 T6.2 |51.6 481 50.6 [50.2 83.0 16.2 |59.3 46.7 66.4 |60.T 635 52.5

EfficientNet-B0| ProGAN [3] StyleGAN2 [Z0] StyleGAN [I5] BigGAN[{] CycleGAN StarGAN [[I] GanGAN [11]
|AP Real GAN‘ AP Real GAN‘ AP Real GANl AP Real GAN‘ AP Real GAN‘ AP Real GANI AP Real GAN

bascline 100, 100, 100. [99.0 95.2 854 [90.0 06.1 943 [$4.4 797 750 [07.3 806 030|960 928 855|983 041 044
top-5 91.8 000 14.5 [68.9 751 53.7 [68.0 746 383 [57.4 TAG 38.3 |78.0 855 54.4 (824 012 40.8 [70.7 074 18.9
top-27 50.0 100. 0.0 [52.1 943 7.0 [52.1 973 2.6 [58.5 074 3.8 [47.5100.0 0.0 [50.0 100. 0.0 |46.2 100. 0.0
top-49 50.0 100. 0.0 [50.0 100. 0.0 [50.0 100. 0.0 [50.0 100. 0.0 [50.0 100. 0.0 [50.0 100. 0.0 [50.0 100. 0.0




