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1. The definition of explanation depends on the question
2. Shapley Values + Why for many data types XAI research does

not end with them
3. Decompositions II – Linearizations: gradient methods,

smoothing, modified gradients including LRP
4. Examples for the value of explanation methods for model

improvement
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1. As many definitions of explanation as there are
different questions
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in feature space
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models: nd closest

prototypes

embed feature 

map distances

mining samples 

maximizing a layer

Explaining 

single decisions

Authors opinion: no method rules them all
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Approximate high-dimensional distances of a feature map
by low-dimensional embeddings | 5

Popular in deep learning: t-SNE
van der Maaten et al.:
https://lvdmaaten.github.io/tsne/examples/caltech101 tsne.jpg

– PCA projections (K. Pearson), Isomap (Tenenbaum et al. graph
defined by k-nearest neighbors and euclidean distances along edges),
many others

– CHAL: how to choose a low-dimensional approximation?

– CHAL: parameter sensitivity https://distill.pub/2016/misread-tsne/

– good for exploration with follow up confirmation

https://lvdmaaten.github.io/tsne/examples/caltech101_tsne.jpg
https://distill.pub/2016/misread-tsne/


Understanding the model: DeepDream | 6

DeepDream as an example of Activation Maximization

Credit: https://github.com/gordicaleksa/pytorch-deepdream

In what ways can one enhance it with more than esthetic value?

https://github.com/gordicaleksa/pytorch-deepdream


Understanding the model: Rank samples which maximize a
channel activation | 7

– The top-3 images which maximally activate a particular channel of
layer layer4.2.conv2 of a ResNet-50 after fine-tuning on Pascal VOC.

– The picture also shows an explanation which region in the image is
contributing to the activation of the channel (using LRP-max ).

Channel has learnt to detect bus views. Selection within the Pascal VOC
validation set.
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Understanding a single prediction: Prototype-based
learning | 9

Find most similar samples that were used to arrive at a prediction
for a sample x .

– k-nearest neighbors
– Explain a prediction in terms of closest training samples



Understanding a prediction: Prototype-based learning | 10

Explain a prediction in terms of closest training samples

Credit: Chen et al. https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf

https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf


A few topics in explaining models | 11

1. The definition of an explanation depends on the
question

Sensitivity 

w.r.t. inputs

Local Linear

Approximation

Constrained

Decomposition

Finding similar 

examples 

in feature space

prototype-based

models: nd closest

prototypes

embed feature 

map distances

mining samples 

maximizing a layer

Explaining 

single decisions

Authors opinion: no method rules them all



Understanding a single prediction: Pertinent positives and
Negatives | 12

Credit: https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf

https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf


Understanding a single prediction: Pertinent positives and
Negatives | 13

Pertinent positive: what to retain from a sample?
Pertinent negative: what to change so that prediction switches?

Pertinent positive: cyan, pertinent negative: pink
Credit: https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf

– CHAL: how to delete/replace information? Result is
plausible/outlier?

– many different PP/PN – how to integrate them?

https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf
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Is this a complete picture?

Many ways to define an explanation of a prediction or a model.
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A more narrow scope: explaining predictions on a single
sample by decomposition | 15
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A more narrow scope: explaining predictions on a single
sample by decomposition | 16

– case of images: compute a score rd(x) for every input dimension d
of the input sample x = (x1, . . . , xd , . . . , xD)

f (x) ≈
D∑

d=1
rd(x)︸ ︷︷ ︸

decomposition

(1)

– objective function is left open



Explanations by decomposition of a single sample | 17

What is a good explanation within the set of decomposition
approaches?

– There a theoretically optimal approach!

2. Shapley values



Shapley values | 18

The Setup:

– Have function f , and a point to be explained x = (x1, . . . , xd).

– We can evaluate f on subsets xS = {xi1 , xi2 , xi3 , . . . |∀k : ik ∈ S} of
features from x .

Shapley value

then the Shapley value is defined as:

ϕj(f , x) = 1
d

∑
S⊆{1,...,d}\{j}

f (xS∪{j}) − f (xS)(d−1
|S|
) (2)

Game Theory: S is set of players playing a game with outcome f (xS).
j a member which can join the set with outcome f (xS∪{j})



Shapley values | 19

Its interpretation?

– Have function f , and a point to be explained x = (x1, . . . , xd).

– We can evaluate f on subsets xS = {xi1 , xi2 , xi3 , . . . |∀k : ik ∈ S} of
features from x .

– then the Shapley value is defined as:

ϕj(f , x) = 1
d

∑
S⊆{1,...,d}\{j}

f (xS∪{j}) − f (xS)(d−1
|S|
) (3)

= 1
numsets

∑
k≥1

∑
sets S without j,|S|=k

differential contrib of j to set S
number of sets of same size |S|

(4)



Shapley values | 20

We have interpreted SHAP.
How to categorize this approach?

ϕj(f , x) = 1
d

∑
S⊆{1,...,d}\{j}

f (xS∪{j}) − f (xS)(d−1
|S|
) (5)

= 1
numsets

∑
k≥1

∑
sets S without j,|S|=k

differential contrib of j to set S
number of sets of same size |S|

(6)
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We have interpreted SHAP.
How to categorize this approach?

ϕj(f , x) = 1
d

∑
S⊆{1,...,d}\{j}

f (xS∪{j}) − f (xS)(d−1
|S|
) (5)

= 1
numsets

∑
k≥1

∑
sets S without j,|S|=k

differential contrib of j to set S
number of sets of same size |S|

(6)

Combinatorially exhaustive occlusion differences for j
differential values: sets with player j , sets without j
(cf. Petliuk et al. RISE https://arxiv.org/abs/1806.07421)

https://arxiv.org/abs/1806.07421


Shapley values | 21

Favourable theoretical properties:

– does not make a difference, zero Shapley-value

∀S : f (xS∪{j}) = f (xS) ⇒ ϕj(f , x) = 0 (7)

– value-equal pair of features j , k, identical Shapley-value:

∀S : f (xS∪{j}) = f (xS∪{k}) ⇒ ϕj(f , x) = ϕk(f , x) (8)

– Efficiency:
d∑

j=1
ϕj(f , x) = f (x) − EX [f (X )] (9)

· decomposition of f (x)
· distributes the difference between function value f (x) and its

expectation EX [f (X )] onto all dimensions in an equal way (not
shown here1)

1Grabisch https://www.worldscientific.com/doi/abs/10.1142/S0218488597000440

https://www.worldscientific.com/doi/abs/10.1142/S0218488597000440


Challenges of Shapley values in practice | 22

We can evaluate f on subsets xS = {xi1 , xi2 , xi3 , . . . |∀k : ik ∈ S} of
features from x . – Outside of tabular data types this is a very
strong assumption.

– How to remove a region in an image, a language sentence ?
– How to remove an interval of a data point being a time series ?
– is S, S ∪ {j} plausible or outlier (bonds and molecules) ?

Dimensions xd of a data sample x ↔ Players in a game ?

No optimality guarantee when
– applicability assumptions do not hold well
– one has to use approximations (e.g. MC)



What other methods exist for data types where Shapley
assumptions do not hold well?

3. Linearizations



Linearizations (Gradient, Gradient × Input, Integrated Gradient, LIME,

Grad-CAM) | 24

– Starting point was: f (x) ≈
∑d

i=1 rd(x) f is non-linear now

– Taylor Expansion (3rd order)

f (x) ≈ f (x0)

+ 1
1!Df (x0)[x − x0]

+ 1
2!D2f (x0)[x − x0, x − x0]

+ 1
3!D3f (x0)[x − x0, x − x0, x − x0] + O(∥x − x0∥4) (10)

Df (x0) =
(

∂f
∂xd

(x0), d = 1, . . . , D
)

= ∇f (x0)

D2f (x0) =
(

∂2f
∂xdxe

(x0), d , e = 1, . . . , D
)

D3f (x0) =
(

∂3f
∂xdxexc

(x0), c, d , e = 1, . . . , D
)



Linearizations (Gradient, Gradient × Input, Integrated Gradient, LIME,

Grad-CAM) | 25

– Starting point was: f (x) =
∑d

i=1 rd(x) f is non-linear now

– Taylor Expansion up to first order:

f (x) ≈ f (x0) + ∇f (x0) · (x − x0) (11)

= f (x0) +
∑

d

∂f
∂xd

|x0(xd − x0,d) (12)

– use as explanation:

rd(x) = ∂f
∂xd

|x0(xd − x0,d) (13)



Linearizations | 26

– Gradient × Input

– Integrated Gradient

– LIME

– Grad-CAM

– LRP



Explanation Methods: Gradient × Input | 27

Use as explanation:

rd(x) = ∂f
xd

(x) xd , R = (rd , d = 1, . . . , D) = ∇f (x) · x

(+) derivation via global Taylor decomposition for a point x0 orthogonal
to the gradient (∇f (x) · x0 = 0) in the point x to be explained.

f (x0) = f (x) + ∇f (x) · (x0 − x) + O(∥x − x0∥2)
⇒ f (x) ≈ f (x0) + ∇f (x) · (x − x0)

= f (x0) + ∇f (x) · x − ∇f (x) · x0︸ ︷︷ ︸
=0

f (x0) is a bias term, independent of any dimension

(–) can be noisy for deep ReLU-networks due to gradient shattering:



Explanation Methods: Gradient × Input | 28

The noiseness of gradient × input and related methods for deep
ReLU-networks:

Credit: https://arxiv.org/pdf/1706.03825.pdf

Gradient Shattering Effect
– Montufar et al. 2014 https://papers.nips.cc/paper/

5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf.
– Balduzzi et al. 2017

http://proceedings.mlr.press/v70/balduzzi17b/balduzzi17b.pdf.

https://arxiv.org/pdf/1706.03825.pdf
https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://proceedings.mlr.press/v70/balduzzi17b/balduzzi17b.pdf


Explanation Methods: Integrated Gradient | 29

Sundararajan et al., ICML 2017,
https://dl.acm.org/doi/10.5555/3305890.3306024

A heuristic very similar to the gradient × input:

rd(x) = (xd − x (0)
d ) 1

R

R∑
r=1

∂f
∂xd

|z=x (0)+ r
R (x−x (0))

– Averages over partial derivatives
along multiple points
x (0) + r

R (x − x (0)) along a path
from x (0) to x .

– Noisy heatmaps in ReLU networks
due to gradient shattering.
Averaging gradients to smoothe
the noise.

– IG gets better with many roots
used (+ slows down).

Credit: https://arxiv.org/pdf/1706.03825.pdf

https://dl.acm.org/doi/10.5555/3305890.3306024
https://arxiv.org/pdf/1706.03825.pdf


Explanation Methods: Grad-CAM | 30

Selvaraju et al. https://arxiv.org/abs/1610.02391

αc
k = 1

Z
∑

i

∑
j

∂y c

∂Ak
ij

(14)

Gc
ij =

∑
k

αc
kAk

ij (15)

Lc
ij = ReLU(Gc

ij ) (16)

It is almost gradient × input in feature space. Three differences:
– smoothing of the gradient in feature space ∂y c

∂Ak
ij

by spatial
averaging (cf. Integrated Gradients)

– average over all channels
∑

k αc
kAk

ij
– retain positive part only (cf. Guided Backpropagation)

https://arxiv.org/abs/1610.02391


Explanation Methods: LRP | 31

– Divide and conquer: decompose network in layers

credit: W. Samek

– Taylor approximation per layer/neuron

– easier to find roots for one layer

– robustness to gradient shattering



Explanation Methods: LRP | 32

credit: W. Samek

LRP has the same flow along graphs as the gradient.



Backpropagation: Chainrule along a graph | 33

dy
dz6

= ∂z4
∂z6

dy
dz4

+ ∂z5
∂z6

dy
dz5

partial derivatives flow along the edges.



Relevance distribution for one neuron: example β-rule | 34

forward pass: yk = g
(∑

i
wikxi + b

)
backward: have computed already the relevance Rk for the neuron output yk

LRP backward: Ri←k(x) = RkMi←k(w , x)

β = 0 : Mi←k =

fraction of positive part of input dim xi relative to all inputs xi′︷ ︸︸ ︷
(wikxi)+∑
i′(wi′kxi′)+

β > 0 : Mi←k = (1 + β) (wikxi)+∑
i′(wi′kxi′)+︸ ︷︷ ︸

positive contributions

−β
(wikxi)−∑
i′(wi′kxi′)−︸ ︷︷ ︸

negative contributions
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Relevance distribution for one neuron: example β-rule | 35

given: have computed already Rk as relevance of neuron output

yk = g(
∑

i
wikxi + b)

Ri←k(x) = RkMi←k(w , x)

Mi←k = (1 + β) (wikxi)+∑
i′(wi′kxi′)+︸ ︷︷ ︸

positive contributions

−β
(wikxi)−∑
i′(wi′kxi′)−︸ ︷︷ ︸

negative contributions

– β controls ratio of negative to total relevance = β
1+2β

.
– negative to total relevance – fixed independent of neuron inputs xi (!).
– bounded relevance scale: |Ri←k | ≤ (1 + β)|Rk | for smoothness of

explanations
– compare to gradient clipping for batchnorm-free training, e.g. Brock et al

https://arxiv.org/pdf/2102.06171.pdf

https://arxiv.org/pdf/2102.06171.pdf


A few topics in explaining models | 36

My method is the best!! Am I one of them?
Credit: Hanabusa Itcho



The value of explanations (not just LRP...) | 37

A. Image captioning: LRP detects words induced by textual
correlations unsupported by image content2

B. Improving test phase model accuracy in small-sample size
training tasks (few-shot learning):
LRP-guided training to improve cross-domain few-shot
learning3

C. Identifying and Improving what universal counterfeit image
detectors use:
Discovering Transferable Forensic Features for CNN-generated
Images Detection4

2J Sun, S Lapuschkin, W Samek, A Binder, Information Fusion, 2021
3J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020
4K Chandrasegaran, NT Tran, A Binder, NM Cheung, ECCV 2022



The value of explanations (not just LRP...) | 38

Case A: Image captioning: LRP detects words
induced by textual correlations unsupported by

image content5

– starting point: wanted to compare attention vs backward
explanation

– relevance: e.g. medical image to text model: does it look at
the X-ray to make a prediction?

5J Sun, S Lapuschkin, W Samek, A Binder, Information Fusion, 2021



Detecting structure-induced predictions – image captioning
case | 39

– Words are generated often by recurrent neural networks:
wordn+1 = RNN Attention(Image,word1, word2,...,wordn)

– Models use attention usually



Detecting structure-induced predictions – image captioning
case | 40

Many image captioning models have a principled structure:

take a word embedding Em(wt−1) and a CNN feature map Ig of an
image as inputs, process them by an RNN:

xt = [Em(wt−1), I]
ht , mt = LSTM(xt , ht−1, mt−1)

An attention mechanism Att(·) uses ht and I to obtain a spatially
reweighted context ct for word prediction.

ct = Att(ht , mt , I)
yt = Predictor(ht , ct)



Detecting structure-induced predictions – image captioning
case | 41

How may Att(·) look like?

For adaptive attention: Let mt be the LSTM memory cell, then:

st = σ(Wxxt + Whht−1) ⊙ tanh(mt)
a = wa tanh(IWI + Wght)
b = wa tanh(Wsst + Wght))

αt = softmax(a) ∈ Rnv

βt = softmax([a, b])(nv +1) ∈ R1

ct = (1 − βt)
∑nv

k=1
α

(k)
t I(k) + βtst

ct = Att(ht , mt , I)



Detecting structure-induced predictions – image captioning
case | 42

How may Att(·) look like?

For multi-head transformer attention:

V̂ (i) = softmax(Q(i)K (i)T
√

dk
)V (i) + V (i)

Q := ht , K := IWk , V := IWv

ct = Att(ht , I) = (V̂ (1), . . . , V̂ (K))

Observation of a common structure: weight (depends on features)
times concatenated features



Detecting structure-induced predictions – image captioning
case | 43

Attention-weighted features share a common structure

f =
∑

i
wi(v)vi

apply signal takes all idea (L Arras et al. ACL 2019):

– do not propagate relevance through weights wi(v) to v

– propagate relevance only to vi directly, by interpreting it as a
weighted sum of vi with static weights wi :

R(f ) LRP−ϵ7−→ {R(vi)}

Combine LSTM-explanation idea and this idea – have explanations for
image captioning



Detecting structure-induced predictions – image captioning
case | 44

LRP: signal takes all

LRP: signal takes all

LRP: signal takes all
e.g. from nn.Linear(h_t)

forward pass

relevance 

backward pass

– Words are generated often by
recurrent neural networks:
wordn+1 = f (Image,word1,
word2,...,wordn)

– Two principles when using
LRP for RNNs:

(1) signal takes all in terms like w = σ(zg,t) ⊙ tanh(zs,t) do not distribute
relevance on gates zg,t . Only onto signal terms zs,t :

R(w) 7→ ( R(zg,t), R(zs,t) ) := (0, R(zs,t))

(2) +: use LRP-ϵ, other linear operations: use LRP-ϵ, β, γ



Detecting structure-induced predictions – image captioning
case | 45

– Forward pass spatial attention cannot perform this task



Detecting structure-induced predictions – image captioning
case | 46

– Debias by explaining object words. Use explanations to reweight
CNN features in training.

– If the prediction for one step is made by an fc layer using ct , ht as

pu = fc(ct + ht),

then during training compute the normalized relevances
R̂(ct) ∈ [0, 2], R̂(ht) ∈ [0, 2]

– use them as element-weise weighting and optimize:

pw = fc( R̂(ct) ⊙ ct︸ ︷︷ ︸
weighted feat

+ R̂(ht) ⊙ ht︸ ︷︷ ︸
weighted feat

)

L = λ Lce(pu, y)︸ ︷︷ ︸
usual loss

+(1 − λ)Lce(pw , y)

wher Lce is the usual cross entropy loss, and y are the ground truth
labels

– Able to measure the quality of debiasing



Detecting structure-induced predictions – image captioning
case | 47

During training: reweight CNN features using explanation scores.
Improves prediction on most frequent object words – by reducing
hallucinating them.

Table: (mAP) of the predicted 25 most frequent object words. (ce):
models are trained only with cross-entropy loss. The other models are
finetuned with SCST for the non-differentiable CIDEr score. BU and
CNN denote Faster-RCNN features and CNN features. Higher mAP
means less object hallucination.

dataset Flickr30K MSCOCO2017
mAP baseline LRP-IFT baseline LRP-IFT
Ada-LSTM-CNN 52.95 54.47 72.29 73.85
Ada-LSTM-BU 63.84 64.61 78.57 80.55
MH-FC-CNN 55.98 57.71 73.74 73.42
MH-FC-BU 64.46 64.98 78.10 77.71
Ada-LSTM-CNN (ce) 58.53 60.80 73.65 74.00
Ada-LSTM-BU (ce) 60.70 65.01 79.06 79.80
MH-FC-CNN (ce) 55.50 59.23 77.15 76.87
MH-FC-BU (ce) 64.08 66.10 81.02 81.16



Detecting structure-induced predictions – image captioning
case | 48

Little change on the set of all words:

Table: The performance of the Ada-LSTM model and MH-FC model with
or without LRP-IFT on the test set of Flickr30K and MSCOCO2017
datasets. L. denotes LRP-inference fine-tuned models. BU and CNN
denote bottom-up features and CNN features. Measures: FB : FBERT S:
SPICE.

dataset Flickr30K MSCOCO2017
FB S FB S

Ada-LSTM-CNN 90.6 13.9 91.7 19.5
L.Ada-LSTM-CNN 90.6 14.0 91.2 19.2
Ada-LSTM-BU 90.0 16.4 91.0 19.2
L.Ada-LSTM-CNN 90.0 16.5 91.0 19.3
MH-FC-CNN 89.9 14.5 91.1 20.1
L.MH-FC-CNN 89.7 14.2 91.0 20.1
MH-FC-BU 90.1 17.1 91.3 21.8
L.MH-FC-BU 90.1 17.0 91.3 21.9



Detecting structure-induced predictions – image captioning
case | 49

Why there is no global improvement ?

Consider for a test sentence the minimal frequency of non-stop words
counted over the training set:

Tradeoff: LRP-finetuning improves on sentences with more rare words!
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Case B: Improving test phase model accuracy in
small-sample size training tasks (few-shot learning):

Explanation-Guided Training for Cross-Domain
Few-Shot Classification6

https://arxiv.org/abs/2007.08790

6J Sun, S Lapuschkin, W Samek, Y Zhao, NM Cheung, A Binder, ICPR 2020

https://arxiv.org/abs/2007.08790


Explanation-Guided Training for Cross-Domain Few-Shot
Classification | 51

Motivation:
– Improve model accuracy at test time by explanation-guided

interventin during the training phase.
– Choose a low sample size setup with a somewhat challenging

task.



Explanation-Guided Training for Cross-Domain Few-Shot
Classification | 52

Few-shot classification

– classify a query image into a
set of support classes with
few samples only

– difference to vanilla
classification: no fixed set of
test classes

– test classes given by example
images from support classes

– support set classes are
variable in the test/training
setup

– classifier is a class-transferable
similarity
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Steps:

– compute prediction with
original model p(f ) based on
feature maps f

– compute explanation scores
R(·) for selected feature maps
f 7−→ R(f ) ∈ [−1, +1]d

– re-weight selected feature
maps:

flrp = (1 + R(f )) ⊙ f

– train: optimize sum of two losses: original features and reweighted
features

L = L(y , p(f )) + λL(y , p(flrp))

– prediction time: use unweighted features p(f )
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– observation: consistent improvement (3 models, several datasets).
LRP-: explanation-guided training using LRP. T: transductive inference.

miniImagenet 1-shot 1-shot-T 5-shot 5-shot-T
RN 58.31±0.47% 61.52±0.58% 72.72±0.37% 73.64±0.40%

LRP-RN 60.06±0.47% 62.65±0.56% 73.63±0.37% 74.67±0.39%
CAN 64.66±0.48% 67.74±0.54% 79.61±0.33% 80.34±0.35%

LRP-CAN 64.65±0.46% 69.10±0.53% 80.89±0.32% 82.56±0.33%
mini-CUB 1-shot 1-shot-T 5-shot 5-shot-T

RN 41.98±0.41% 42.52±0.48% 58.75±0.36% 59.10±0.42%
LRP-RN 42.44±0.41% 42.88±0.48% 59.30±0.40% 59.22±0.42%

CAN 44.91±0.41% 46.63±0.50% 63.09±0.39% 62.09±0.43%
LRP-CAN 46.23±0.42% 48.35±0.52% 66.58±0.39% 66.57±0.43%
mini-Cars 1-shot 1-shot-T 5-shot 5-shot-T

RN 29.32±0.34% 28.56±0.37% 38.91±0.38% 37.45±0.40%
LRP-RN 29.65±0.33% 29.61±0.37% 39.19±0.38% 38.31±0.39%

CAN 31.44±0.35% 30.06±0.42% 41.46±0.37% 40.17±0.40%
LRP-CAN 32.66±0.46% 32.35±0.42% 43.86±0.38% 42.57±0.42%

mini-Places 1-shot 1-shot-T 5-shot 5-shot-T
RN 50.87±0.48% 53.63±0.58% 66.47±0.41% 67.43±0.43%

LRP-RN 50.59±0.46% 53.07±0.57% 66.90±0.40% 68.25±0.43%
CAN 56.90±0.49% 60.70±0.58% 72.94±0.38% 74.44±0.41%

LRP-CAN 56.96±0.48% 61.60±0.58% 74.91±0.37% 76.90±0.39%
mini-Plantae 1-shot 1-shot-T 5-shot 5-shot-T

RN 33.53±0.36% 33.69±0.42% 47.40±0.36% 46.51±0.40%
LRP-RN 34.80±0.37% 34.54±0.42% 48.09±0.35% 47.67±0.39%

CAN 36.57±0.37% 36.69±0.42% 50.45±0.36% 48.67±0.40%
LRP-CAN 38.23±0.45% 38.48±0.43% 53.25±0.36% 51.63±0.41%
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– observation: consistent improvement (3 models, several datasets)

5-way 1-shot miniImagenet Cars Places CUB Plantae
GNN 64.47±0.55% 30.97±0.37% 54.64±0.56% 46.76±0.50% 37.39±0.43%

LRP-GNN 65.03±0.54% 32.78±0.39% 54.83±0.56% 48.29±0.51% 37.49±0.43%
5-way 5-shot miniImagenet Cars Places CUB Plantae

GNN 80.74±0.41% 42.59±0.42% 72.14±0.45% 63.91±0.47% 54.52±0.44%
LRP-GNN 82.03±0.40% 46.20±0.46% 74.45±0.47% 64.44±0.48% 54.46±0.46%
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– combined with the feature
transform from: (Cross-domain
few-shot classification via learned
feature-wise transformation,
HY Tseng, HY Lee, JB Huang, MH
Yang, ICLR 2020), it improves
synergistically:

5-way 1-shot Cars Places CUB Plantae
RN 29.40±0.33% 48.05±0.46% 44.33±0.43% 34.57±0.38%

FT-RN 30.09±0.36% 48.12±0.45% 44.87±0.44% 35.53±0.39%
LRP-RN 30.00±0.32% 48.74±0.45% 45.64±0.42% 36.04±0.38%
LFT-RN 30.27±0.34% 48.07±0.46% 47.35±0.44% 35.54±0.38%

LFT-LRP-RN 30.68±0.34% 50.19±0.47% 47.78±0.43% 36.58±0.40%
5-way 5-shot Cars Places CUB Plantae

RN 40.01±0.37% 64.56±0.40% 62.50±0.39% 47.58±0.37%
FT-RN 40.52±0.40% 64.92±0.40% 61.87±0.39% 48.54±0.38%

LRP-RN 41.05±0.37% 66.08±0.40% 62.71±0.39% 48.78±0.37%
LFT-RN 41.51±0.39% 65.35±0.40% 64.11±0.39% 49.29±0.38%

LFT-LRP-RN 42.38±0.40% 66.23±0.40% 64.62±0.39% 50.50±0.39%

RelationNet. FT and LFT indicate the feature-wise transformation layer with
fixed or trainable parameters.
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– also works with other XAI methods such as gradient times
input, see Table 2 / page 19 in
https://arxiv.org/pdf/2203.08008.pdf

https://arxiv.org/pdf/2203.08008.pdf


The value of explanations (not just LRP...) | 58

Case C: Identifying and Improving what universal
counterfeit image detectors use:

Discovering Transferable Forensic Features for
CNN-generated Images Detection7

7K Chandrasegaran, NT Tran, A Binder, NM Cheung, ECCV 2022,
https://keshik6.github.io/transferable-forensic-features/

https://keshik6.github.io/transferable-forensic-features/
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– find relevant feature space channels
– How to validate the findings from explainability methods in

feature spaces? Eyeballing heatmaps is not informative
anymore.

– Analyze what do universal detectors for counterfeit images
learn?
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– obtain trained universal counterfeit image detector models
(ResNet-50, EfficientNet-B0)

– Discover relevant feature channels



Identifying what drives universal counterfeit image
detectors | 61

– compute LRP score for every feature map R[i , c, h, w ] for image xi

– aggregate it into a measure for a channel:

Ri [c] =
∑

h,w (R[i , c, h, w ])+∑
c,h,w |R[i , c, h, w ]|

– average it over images xi

R[c] = 1
n

n∑
i=1

Ri [c]

– select top-k feature channels (k = 114 for ResNet, k = 27 for
EffNet-B0) according to R[c]
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– Validate the discovered top-k relevant feature channels
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Validate the discovered top-k relevant feature channels:

– measure accuracy drop when performing dropout of top-k relevant
feature channels

– measure accuracy drop when performing dropout k randomly
selected feature channels (perform 5 times, average accuracies)

– measure when performing dropout of bottom-k relevant feature
channels

– compare accuracies
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ResNet-50 ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100. 100.0 100. 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
top-k 69.8 99.4 3.2 55.3 89.4 11.3 56.6 90.6 13.7 55.4 86.3 18.3 61.2 91.4 17.4 72.6 89.4 35.9 71.0 95.0 18.8

random-k 100. 99.9 96.1 98.6 89.4 96.9 98.7 91.4 96.1 88.0 79.4 85.0 96.6 81.0 96.2 97.0 88.0 91.7 98.7 91.9 97.1
low-k 100. 100. 100. 99.1 95.6 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4

EfficientNet-B0 ProGAN StyleGAN2 StyleGAN BigGAN CycleGAN StarGAN GauGAN

k = 27 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline 100. 100. 100. 95.9 95.2 85.4 99.0 96.1 94.3 84.4 79.7 75.9 97.3 89.6 93.0 96.0 92.8 85.5 98.3 94.1 94.4
top-k 50.0 100. 0.0 54.5 94.3 7.0 52.1 97.3 2.6 53.5 97.4 3.8 47.5 100. 0.0 50.0 100. 0.0 46.2 100. 0.0

random-k 100. 99.9 100. 96.5 91.9 89.8 99.2 91.2 97.5 84.5 59.4 89.1 96.9 82.6 95.8 96.7 82.5 93.3 98.1 87.8 96.2
low-k 100. 100. 100. 95.3 88.7 88.3 98.9 90.8 96.1 83.5 70.8 80.8 96.6 85.2 94.1 95.4 91.0 85.4 98.1 91.2 96.4

– validation: top-k feature maps seem to be important
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– Visualize the discovered relevant feature channels
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Visualize the discovered relevant feature channels
– choose channels c belonging to top-k feature maps
– find (h∗, w∗) = argmaxh,w Ri [0, c, h, w ]. Identify regions in

input space corresponding to this (h∗, w∗)

What do we observe ???
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Colorful!

– Is color an important feature? Or still texture?
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Predictive accuracy from the forward pass:
– Measure cross-GAN detector accuracy with color-ablated

counterfeits:
– measure accuracy on colored and gray-scaled counterfeits.
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Measure cross-GAN detector accuracy with gray-scaled counterfeits
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– small drop when using color ablation and the same GAN used for
training (leftmost)

– big drop when using gray-scaling and unseen GANs

– color is important for cross-GAN generalization ?!
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Measure cross-GAN detector accuracy with gray-scaled
counterfeits: other dataset: BigGAN-real/fake, Effnet-B0

– same observation!! Not limited to one dataset
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– compare forward pass activation statistics: original vs
gray-scaled images for relevant channels (Effnet-B0)
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– Improve cross-GAN detector performance
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Improve cross-GAN detector performance

– retrain with 50% grayscaled counterfeits

– measure accuracy for colored vs grayscaled counterfeits

– Improvement!
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There is no one optimal explanation. LRP works in practice if used
properly. Other methods are useful, too.

Credit: Hanabusa Itcho
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Can we ablate channels in the generator to fool the detector?
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– Backproject LRP scores from the detector into the image, then into
the GAN code which I had.

– yes, but resulting images look absurd!
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different top-k values


