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Abstract. Decisions of automated systems in healthcare can have far-
reaching consequences such as delayed or incorrect treatment and thus
must be explainable and comprehensible for medical experts. This also
applies to the field of automated Flow Cytometry (FCM) data analysis.
In leukemic cancer therapy, FCM samples are obtained from the patient’s
bone marrow to determine the number of remaining leukemic cells. In
a manual process, called gating, medical experts draw several polygons
among different cell populations on 2D plots in order to hierarchically
sub-select and track down cancer cell populations in an FCM sample.
Several approaches exist that aim at automating this task. However, pre-
dictions of state-of-the-art models for automatic cell-wise classification
act as black-boxes and lack the explainability of human-created gating
hierarchies. We propose a novel transformer-based approach that clas-
sifies cells in FCM data by mimicking the decision process of medical
experts. Our network considers all events of a sample at once and pre-
dicts the corresponding polygons of the gating hierarchy, thus, producing
a verifiable visualization in the same way a human operator does. The
proposed model has been evaluated on three publicly available datasets
for acute lymphoblastic leukemia (ALL). In experimental comparison it
reaches state-of-the-art performance for automated blast cell identifica-
tion while providing transparent results and explainable visualizations
for human experts.

Keywords: self-explainable deep learning models · transformer · flow
cytometry gating · acute lymphoblastic leukemia.
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1 Introduction

Deep Learning models are applicable to a variety of problems arising in health-
care. However, since wrong predictions can have severe consequences, the inter-
pretability of models in this domain is crucial. The output produced by a model
needs to be transparent, even for clinicians without any knowledge about the
interior of the model. This is also true for the field of automated cell detection
in Flow Cytometry (FCM) data. FCM measures the antigen expression levels
of blood or bone marrow cells. It is used in research as well as in daily clinical
routines for tasks such as immunophenotyping or for monitoring residual num-
bers of cancer cells (minimal residual disease, MRD) during chemotherapy. A
typical sample contains 50-500k cells (also called events) per patient with up
to 15 different features (markers) measured. Each feature corresponds to either
physical properties of a cell (cell size, granularity) or to the expression level of a
specific antigen marker on the cell’s surface [18]. While methods for automated
MRD assessment already reach human expert level performance [30], they lack
interpretability of their predictions. Regardless of a model’s performance, clini-
cians have to manually verify the prediction in a time-consuming process. Using
explainable methods could overcome this issue.

Molnar [19] divides existing explainable AI methods into two categories: In-
trinsically interpretable models are interpretable due to their internal struc-
tures. Linear models, decision trees or naive Bayes are common examples of this
category. Post-hoc interpretation methods analyze a model after training
in order to gather explainable insights. Common examples of this category are
methods that visualize inner structures of neural networks such as saliency maps
[20] and CNN feature visualization techniques or methods, that analyze data in-
put and output pairs of a model to build an explaining description such as
LIME [23], shapely values [24,25] and partial dependence plots [9]. In [8] a third
category self-explaining AI is described, according to which a self-explaining
model yields two outputs: a decision and an explanation of that decision.

One way to obtain a self-explaining AI system is to reformulate a prediction
task such that the model outputs the same kind of data a domain expert would
create to solve or explain a particular problem instance. Instead of directly pre-
dicting the solution to a given problem instance, the model is asked to predict
a solution path. For instance, to solve a linear equation, one can either directly
state the solution or provide a series of coherent deductive steps that build an
interpretable path to the solution. The latter approach strengthens the trust in
the correctness of the solution. While not every data domain admits the mod-
eling of such a solution path, in the field of FCM the gating hierarchy can
be chosen as an explainable solution path for the problem of cell identification.
The conventional procedure to analyze FCM data in the clinical routine is to
look at 2D projections of the FCM data and label sub-populations of events
by drawing polygons around them [18]. This procedure is called gating and
the polygons are called gates. As illustrated in Figure 1, gates act as filters by
defining the events that are subject to further analysis in other 2D projections
(events inside a gate) and the events that will be discarded (events outside the
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Fig. 1. All seven gates of the used gating hierarchy are depicted for an arbitrary FCM
sample. Each plot shows a projection of the multidimensional data on two different
features. The automated predicted polygons are drawn black and the human operator-
created ground truth polygons are drawn in a different color per gate.

gate). The target population can then be identified by a boolean combination
of gates. Gates drawn in specific projections are often applied in sequence, such
that one plot only depicts the events selected by the previous plot’s polygon. Se-
quentially applying these gates allows to identify cancer cell populations in the
FCM sample. The 2D plots of the data space allow to explicitly depict antigen
expressions of the cells in the sample, which are known to be relevant in partic-
ular diseases. For example, among other characteristics, CD19 is known to be
higher expressed for B-cells [18]. Gating allows analyzing complex patterns of cell
populations by a sequence of simpler intermediate steps, which are interpretable
by clinicians. Thus, gating is not only a way for finding biologically meaningful
sub-populations but has also become the standard for the communication and
documentation of FCM sample assessment. Thus it is crucial that the output of
machine learning model is compatible with this standard.

In this work we propose a novel method, based on the transformer network,
that predicts the polygons of a gating hierarchy to identify cancer cells for MRD
assessment in FCM samples of acute lymphoblastic leukemia (ALL) patients.

Contribution This work’s contribution is two-fold:

1. A model for ALL blast cell identification is proposed that yields human in-
terpretable visualizations by predicting the polygons of the gating hierarchy
while reaching state-of-the-art performance.

2. The proposed model demonstrates how a self-explaining AI systems can be
obtained in the medical domain by reformulating the objective function to
mimic established human solution procedures.

The remainder of this work is structured as follows. Section 2 gives an
overview of methods for automated MRD assessment in FCM data as well as
of related architectures. In Section 3 the proposed model is described in detail.
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Section 4 states the conducted experiments, compares the proposed approach to
other methods and discusses the results.

2 Related Work

Numerous approaches have been established to automate the detection of cell
populations in FCM data. The reader is referred to [7] for a more comprehensive
review of current trends in automated FCM data analysis. We divide methods for
the targeted analysis of FCM data into discriminative and holistic approaches.
Approaches that process FCM data event-wise only learn fixed decision regions
and are referred to as discriminative approaches. In contrast, holistic approaches
process a whole FCM sample and, therefore can account for inter-sample vari-
ations, which has been identified as crucial for the correct classification of cell
populations with high variability such as leukemic cells [28].

Discriminative Approaches In [1] linear discriminant analysis is proposed for
the classification of cell populations as it allows for interpretable performance
and reproducibility. Authors in [12] and [10] use a table of marker expression
patterns in different cell types as a reference dictionary. Methods based on neural
networks include [15,14].

Holistic Approaches FlowDensity [17] and FlowLearn [16] use an operator’s 2D
gating strategy as a guideline for detecting cell populations. Recently, a one-class
classification approach based on Uniform Manifold Approximation was intro-
duced [29]. Further, Gaussian mixture models (GMM) have proven to be well
suited to model cell populations in FCM data [6,22]. Reiter et al. [22] fit a linear
combination of GMMs with labeled components to an unseen sample by Expec-
tation Maximization (EM). [31,4,30] are approaches based on neural networks
that can process a whole sample at once. Authors in [31] use self-organized maps
to obtain a 2D image that a CNN further processes. CellCNN [4] automatically
learns a concise cell population representation with a 1D-convolution layer fol-
lowed by a pooling layer to aggregate information. More recently, Wödlinger
et al. [30] presented a method based on the transformer architecture [27] that
performs classification on single-cell level, while processing a entire sample in
a single neural network forward pass. The attention mechanism of the original
transformer architecture [27] entails a quadratic complexity in the input length
O(n2) of both memory and time, which is unfavorable in the context of FCM
data as one sample can contain up to millions of events. Wödlinger et al. thus
use the concept of the Induced Set Attention Block (ISAB) as introduced in the
set-transformer [13] that reduces the complexity to O(n).

Explainable Approaches With respect to explainability of results, [10,17,16] can
be listed as their results rely on predicted thresholds and hence are interpretable.
Algorithmic Population Descriptions (ALPODS), as proposed in [26], is designed
to provide explainability by fuzzy reasoning rules in a Bayes decision network
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expressed in visualizations similar to those generated by domain experts. An-
other approach related to explainable AI and the method presented in this work
is GateFinder [2]. Its goal is to find the shortest yet most discriminative series of
2D polygon gates that lead to a previously specified target population. Although
the goal of GateFinder is not targeted analysis, the underlying idea of mimicking
the gating strategy of domain experts is similar to the approach presented.

3 Methods

The proposed method consists of a trained neural network that is based on the
transformer architecture. The model expects a single FCM sample as input, i.e.
a set of events E ∈ RN×m. N defines the number of events (50 − 500 × 105)
and m denotes the number of markers (typically 10− 20). The network’s output
are 7 polygons defined by P = 20 2D points each. The polygons describe the
gating hierarchy for MRD assessment in ALL data, which implies the cell’s class
membership. Table 1 displays the predicted gates and the used markers.
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Fig. 2. The network architecture consists of the encoder, decoder, prediction head and
the resulting polygons that form the gating hierarchy for a given input FCM sample.

Table 1. The gates and their used features of the predicted gating hierarchy

Name Syto Singlets Intact CD19 Blast-A Blast-B Blast-C

Marker y-Axis FSC-A SSC-A SSC-A SSC-A CD10 CD10 CD10

Marker x-Axis Syto41 FSC-W FSC-A CD19 CD45 CD20 CD38

3.1 Architecture

As depicted in Figure 2, the model’s architecture follows an encoder-decoder
schema as in [5]. A set-transformer similar to [30] is used for the encoder, consist-
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ing of two ISAB blocks. The decoder design is inspired by [5]: for each predicted
polygon, four static object queries are learned. The object queries are applied
to the encoder’s output via cross attention, which is followed by a self-attention
layer. Each element of the 7-element long decoder output set is passed through
a two-layer fully connected neural network called the prediction head. The re-
sulting 20 2D points per element are used as gate polygon for each of the 7 gates
in the ALL gating hierarchy. We empirically evaluated that 20 points are most
suitable for the given task. More than 20 points only slightly increase the perfor-
mance (max 1% median F1-Score) while drastically increasing the network size
(see Table 4).

3.2 Preprocessing

The operator-annotated polygons comprise two issues regarding their usage as
ground truth for training: polygons are typically only roughly estimated, with
borders often far away from the nearest events inside the polygon. While this does
not affect the effectiveness of the procedure during clinical routine, it introduces a
source of ambiguity in the gating process by perturbing the relationship between
polygon position and data points. Secondly, for different FCM samples different
feature combinations for some of the plots in the gating hierarchy were used
by the operator since different operators may use slightly different strategies to
track down blast events. However, the model predicts the polygons for a statically
predefined set of 2D plot feature combinations. The selected set reflects the most
common feature combinations for each gate in the given datasets. We address
both issues by computing the convex hull of all events inside the polygon during
preprocessing for each gate. The resulting hull serves as adapted training ground
truth, which can be created for any required combination of 2D plot features
while tightly enclosing the events inside.

3.3 Loss Function

Lpoly(p̂, p) =

P∑
i

∥p̂σ̂(i), pi∥1 with σ̂ = argmin
σ∈SP

P∑
i

∥pi, p̂i∥1 (1)

The model is trained in a supervised manner. Since the number of polygon
vertices differs from sample to sample in the ground truth but is fixed to P = 20
for the model prediction, we artificially insert or remove points in the ground
truth polygons to obtain P points. Equation 1 states the loss for a predicted
polygon p̂ where σ̂ ∈ SP defines a permutation of the polygon points such that
every predicted point is matched to one corresponding ground truth point using
the Hungarian method [11]. The distance between two points is calculated via
L1 norm. Similar to [5,3] we experienced, an auxiliary loss benefits the model
convergence. The auxiliary loss performs the same computation as the main loss
but after each intermediate layer the following intermediate layers are skipped.
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3.4 Data Augmentation

To address the low number of training samples (e.g.: ≤ 60 for the BUE dataset),
to overcome inter-laboratory differences and to facilitate learning the relation-
ship between polygon and cell cluster position, four different data augmentation
steps are applied to the FCM samples during training: For all events and poly-
gons random linear translations of randomly selected features are applied. For
randomly selected gates linear scaling (stretching and squeezing in relation to
the center), linear translation and shearing of polygons and their corresponding
events are used. Further information is given in the Supplementary material 7.

4 Experiments

The same experiments as in [30] have been conducted. In all experiments the
proposed model’s ability to generalize to new unseen FCM samples (in most
cases from different institutes) is tested. The model is implemented in Pytorch
1.10 [21] and trained using the Adam optimizer with a batch size of 12 and a
learning rate of 1× 10−3. It consists of 32892 parameters and has been trained
on a NVIDIA Gefore RTX 2080 Ti. One model forward pass takes ≈ 400ms on
the used GPU and ≈ 3000ms on an Intel i7-10750H CPU. Details about the
training setup can be found in the provided code on GitHub7.

4.1 Data

The proposed model is evaluated on four different datasets collected across three
distinct institutions, measured on three different FCM devices, consisting of over
600 samples in total. From all four datasets, the three datasets VIE14, BLN, BUE
are publicly available8. All samples have been obtained from the bone marrow
of pediatric B-ALL patients on day 15 after induction therapy. The following
markers are used in the experiments as they are shared upon all samples: CD10,
CD19, CD20, CD34, CD38, CD45 and Syto41 as well as FSC-A, FSC-W and
SSC-A. For a detailed dataset description, the reader is referred to [22] for VIE14,
BLN and BUE, and to [30] for VIE20. The experiments have been evaluated by
training one network for each dataset.

4.2 Results

Table 2 displays the results compared to [22] and [30]. For each experiment the
cell classification performance (blast cell vs. non-blast cell) of each sample is
summarized with the mean and median F1-Score of all samples in the corre-
sponding test set. The results show that the proposed model is able to reach
state-of-the-art performance for blast identification tested on data across differ-
ent institutes. However, the model under-performs on small training datasets

7 Github Repository
8 flowrepository.org

https://github.com/CaRniFeXeR/self_explainable_transformerflow
https://flowrepository.org/id/FR-FCM-ZYVT
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such as BLN and BUE with 70 and 60 training samples. In these cases, the
model overfitted during training and was not able to generalize well onto new
samples from different sources: Qualitatively inspections revealed that while the
cluster positions were mostly correctly predicted, the model failed to predict the
correct form of unseen polygon shapes.

Table 2. Experiment results of the proposed method compared to GMM [22] and set-
transformer [30]. The table reports mean F1-Score / median F1-Score.

Train Test GMM [22] Transformer [30] Proposed

VIE14
BLN 0.72/0.81 0.77/0.90 0.79/0.88
BUE 0.75/0.90 0.82/0.95 0.78/0.89
VIE20 0.77/0.90 0.80/0.91 0.78/0.87

VIE20
BLN 0.53/0.58 0.68/0.83 0.73/0.85
BUE 0.74/0.88 0.75/0.88 0.82/0.92
VIE14 0.80/0.91 0.84/0.93 0.73/0.88

BLN
BUE 0.65/0.76 0.66/0.87 0.69/0.84
VIE14 0.48/0.48 0.82/0.92 0.58/0.73
VIE20 0.53/0.60 0.82/0.91 0.50/0.55

BUE
BLN 0.62/0.73 0.64/0.78 0.57/0.69
VIE14 0.66/0.73 0.83/0.92 0.62/0.69
VIE20 0.67/0.78 0.79/0.90 0.65/0.75

The explainable and hierarchical processing of FCM samples in the pro-
posed model elicits two main benefits: first, during model development, unwanted
model behaviors such as learned biases can be spotted and addressed. For in-
stance, all applied data augmentation steps were motivated during inspection of
the prediction results in the early development stages. Secondly, during inference,
the model’s prediction can be interpreted. For example, a medical expert can
spot and correct a fault in the blast cell classification due to a miss-positioning of
a specific polygon in the predicted hierarchy. Take, for example, the CD10CD45-
Blast-Gate in Figure 1: a clinician could adjust the predicted polygon such that
no events of the seconded cluster are included in the gate.

5 Conclusion

This work proposes a novel transformer-based approach for blast cell detection in
FCM samples of ALL patients. The model visually reveals which cells it identifies
as blast cells by predicting the polygons of the gating hierarchy for a given FCM
sample. This imitates the construction of a gating hierarchy by a human expert
in clinical practice and therefore explains why certain events are detected as blast
cells. While the proposed model fails to generalize well when trained on small
datasets (≤ 70 samples), its performance is comparable to non-explainable state-
of-the-art approaches on more populated datasets (≥ 180 samples). Future work
could address this issue by pretraining the model on artificially generated data.



Towards Self-Explainable Transformers for Cell Classification in FCM Data 9

Since the model mimics the decision process of domain experts, it is suitable to
be included in the clinical gating routine in the future. The proposed model is
designed for pediatric ALL, but the underlying concept could be applied to any
disease for which standardized FCM gating hierarchies exist.
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7 Supplementary material

Equation of the event and polygon scaling data augmentation:

x̂ = (x− c) · (1± s) + c (2)

with c = min(x) + ∆x
2 , where ∆x = max(x)−min(x) and s ∼ U(0, 0.3)

Table 3. Due to missing intermediate or blast gates, not all samples as in [30] could
be used in this work. This table compares the number of used samples per dataset to
[30]. In Table 2 the same samples were used to evaluate all 3 methods.

Dataset # Transformer [30] # Proposed

VIE14 200 186
VIE20 319 291
BLN 72 70
BUE 65 60
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Table 4. Median F1-Score of the artificially generated convex hull polygons compared
to the operator ground-truth for different polygon lengths.

Dataset 5 10 20 30 40 60

VIE14 72.02 92.65 94.81 94.98 95.07 95.38
VIE20 67.90 92.57 92.96 93.35 93.51 94.07
BLN 61.38 88.97 90.35 90.41 90.79 91.18
BUE 72.27 96.75 97.54 97.46 97.71 97.97
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Fig. 3. The different augmentation steps applied to an FCM sample: a) Random linear
shifts of the whole feature space. b) Scaling of the blast population’s shape. c) Random
linear shifts of the blast events. d) Shearing of gates and events along single features.

Fig. 4. The ground truth polygons constructed from convex data hulls. Each row shows
the gates of one dataset. Each column shows one of the 7 gates of the used ALL gating
hierarchy. This plot highlights the cell clusters shifts among the different laboratories.
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