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Abstract. Explainable Artificial Intelligence (XAI) is the field of AI dedicated to
promoting trust in machine learning models by helping us to understand how they
make their decisions. For example, image explanations show us which pixels or seg-
ments were deemed most important by a model for a particular classification decision.
This research focuses on image explanations generated by LIME, RISE and SHAP
for a model which classifies breast mammograms as either benign or malignant. We
assess these XAI techniques based on (1) the extent to which they agree with each
other, as decided by One-Way ANOVA, Kendall’s Tau and RBO statistical tests,
and (2) their agreement with the diagnostically important areas as identified by a
radiologist on a small subset of mammograms. The main contribution of this research
is the discovery that the 3 techniques consistently disagree both with each other and
with the medical truth. We argue that using these off-shelf techniques in a medical
context is not a feasible approach, and discuss possible causes of this problem, as well
as some potential solutions.
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1 Introduction

Recent developments in deep learning (DL) have sparked an interest in more high-stakes
applications such as medical diagnostics. Given a medical scan, a clinician may want to
differentiate between healthy and unhealthy tissue, or between pathologies. However, the
black-box nature of DL models means their conclusions tend not to be trusted by clinicians
who cannot determine how the model came to its decision. Interpretable explanations are
therefore crucial. Many medical experts have already expressed their concerns over rising
black-box DL approaches [8].

Explainable AI (XAI) techniques exist to bridge this gap by intuitively highlighting the
most important features of an input. This gives the model practitioner more information
about how to improve the model’s correctness, and gives the end-user, potentially a non-
expert, an idea of how the model came to its conclusion. Knowing that a model’s conclusion
is correct is essential in medical diagnostics as their outcomes could impact lives.

Using XAI techniques for medical diagnostics comes with its own set of problems. Medical
datasets are problematic due to differing labelling standards – some images have complete
clinical annotation, while others simply state whether a tumour is present. Many techniques
run into problems for images with small regions of interest (ROIs), due to their usage of
image segmentation. This is the case for breast mammograms as cancerous regions can be
extremely small. [23] discusses the serious implications of bad explanations in high stakes
contexts. Saliency maps, which are commonly used to visualise image explanations, can be
virtually identical for different classes on the same image [2]. Unreliable and misleading
explanations can have serious negative implications.

We present a case study which focuses on the quality of explanations from 3 widely
used XAI techniques, applied to a publicly available CNN-based classification model used



2 Rafferty, A. et al.

to identify malignant and benign breast tumours (originally designed for brain tumour de-
tection [15]), and a public anonymised dataset of benign and malignant breast mammograms
[12]. We assess the XAI techniques based on (1) the extent to which they agree with each
other for the whole dataset, and (2) evaluation by two independent radiologists on the
correctness of the important regions identified by each of the XAI techniques for 10 mam-
mograms. The XAI techniques used in our study, LIME [20], SHAP [14] and RiSE [18], are
discussed in the next Section.

2 Related Work

Many existing XAI techniques are applicable to the medical context. [31] presents an ex-
haustive list of techniques used for medical image analysis - we limit our consideration here
to LIME, SHAP and RISE due to their popularity and ease of use [5]. We plan to consider
other XAI techniques in the future.

LIME - Local Interpretable Model-Agnostic Explanations. LIME [20] is an XAI
technique which can be applied to any model without needing any information about its
structure. LIME provides a local explanation by replacing a complex neural network (NN)
locally with something simpler, for example a Ridge regression model. LIME creates many
perturbations of the original image by masking out random segments, and then weights
these perturbations by their ‘closeness’ to the original image to ensure that drastic pertur-
bations have little impact. It then uses the simpler model to learn the mapping between
the perturbations and any change in output label. This process allows LIME to determine
which segments are most important to the classification decision – these segments are then
shown in the visual explanation output.

RISE - Randomized Input Sampling for Explanations of Black Box Models.
RISE [18] works by first generating many random masks of an image, multiplying them
elementwise with the image, and then feeding them directly into the original model for
label prediction. Saliency maps are generated from a linear combination of the masks where
weights come from the output probabilities predicted by the model. These saliency maps
highlight the most important pixels of the image regarding its classification. This makes
RISE extremely interpretable. RISE is also model agnostic. We note that RISE is very similar
to LIME, however it measures saliency based on individual pixels, rather than superpixels,
and therefore may perform better on images with small ROIs (eg. mammograms).

SHAP - Shapley Additive Explanations. SHAP [14] is another model-agnostic ap-
proach which uses Shapley values, a concept from game theory, to find the contribution of
each feature to the model’s output. The image is segmented to reduce the number of value
computations. Starting from one random segment, we add one segment at a time until the
correct model classification is possible. This is repeated many times with random orderings
to get the importance of each segment, represented as Shapley values. Large positive SHAP
values indicate that the segment is very important to the classification decision. SHAP is
also a highly interpretable technique. We note that SHAP values are derived from game the-
ory’s Shapley values – they are not the same, and the mathematical differences are discussed
in detail in [14].

2.1 XAI in Medicine

These methods, as well as other techniques [33] [27] [34] [26] [24] [29] [30], have had huge
success, particularly in the image classification and Natural Language Processing fields,
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however they are only beginning to be evaluated in any medical context [31]. An important
issue to note is that when using larger medical images such as MRI scans, there is a need
to split the images into tiles due to their extremely high resolutions. XAI techniques then
need to be run on each tile, and the results need to be brought back together. Since we are
working with mammograms, this is not an issue for this research, but is something we plan
to explore in future work.

[25] highlights some of the challenges faced by medical professionals regarding XAI – not
all visualisations are interpretable, there is no current definition for sufficient explainability
in the field, and XAI techniques are not satisfactorily robust [1]. They describe the issue
of the knowledge gap between AI and medical professionals, and the effects this has on
techniques. Currently the focus of medical XAI seems to be on diagnosing rare diseases
and monitoring health trends [25]. Some contributions to XAI for tumour classification
exist, for example [6] which focuses on sequencing gene data, and [21] which also focuses on
mammograms, though with gradient-based XAI techniques. [11] argues that explanations
generated by LIME and SHAP cause no improvement on human decision making abilities
– when shown an image both with and without an explanation, there was no statistical
difference in the time it took for people to classify the image by eye, or in the number of
mistakes made. This is concerning as the goal of diagnostic XAI is to make the lives of
medical professionals easier, and remove the need for tedious by-eye classification [19] [10].

(a) INbreast (b) DDSM (c) MIAS

Fig. 1: Example images from each of the three dataset sources.

3 Model Setup

3.1 Data Pre-Processing

For this research we take breast mammograms with cancerous masses from a public dataset
[12], which takes images from 3 official datasets – INbreast [16], DDSM [3] and MIAS [28].
When generating this dataset, the creators [13] extracted a small number of images with
masses from each source, and performed data augmentation in the form of image rotation
to generate a larger dataset. They also re-sized images to 227x227 pixels.

The public dataset [12] we are using is large. The original paper introducing this dataset
[13] details their data augmentation techniques, which includes rotating and flipping each
image to generate 14 variations of itself. This is not useful for this research – we are not
trying to train a model that can cope with rotated breast scans, as the original scans and
therefore any unseen real-world scans are all of the same orientation. We only use images
of the original orientation. We also only take images from INbreast and DDSM, as the
only MIAS scans present in the dataset were benign, though we plan to include MIAS
for evaluation purposes (eg. Out-Of-Distribution detection (OOD) [17]) in future work to
improve model confidence. The visual difference in original scans between the 3 sources is
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shown in Figure 1. After selecting the images of the same orientation from the INbreast and
DDSM sections of the dataset, we have a dataset of 2236 images - 1193 benign and 1043
malignant.

Image Cropping. For maximal model performance, we crop out as much of the black
background as possible, making the breast the focus of each image. This was performed using
basic Python opencv code. Images are then resized to the original 227x227 pixel format for
consistency.

Dataset Split. Our dataset of 2236 images is split into a (Training / Validation / Testing)
ratio of (2124 / 56 / 56). The Validation set will be used for all intermediate experiments
– deciding how many epochs to train the model for, and tuning parameters for LIME. A
small test set was chosen to ensure sufficient model training due to the small dataset size.

3.2 Model Architecture

We use an existing public CNN [15] which was originally used for binary classification of
brain scans regarding the presence of a tumour. We use this model as it was specifically
designed for the domain of tumours in medical scans, and was therefore reliable in the sense
that it was likely to perform well on data like ours - noisy black and white scans containing
cancerous legions. In the original study the model achieved 88.7% accuracy on the test set.
The model takes an image and outputs a decimal value between 0 and 1, where 0 is benign,
and 1 is malignant. We have taken 0.5 to be the threshold value for these classifications.
The CNN contains 8 layers, using ReLU activation.

To avoid overfitting, we train four models differing only in numbers of epochs, and
evaluate their performances on the Validation set. The performances of these models are
described in Table 1 (Appendix A.1) in the form of their Accuracy and F1 Score. These
statistics are based on a Validation set of 56 images. We proceed with the 75 epoch model
as it has the highest performance scores. On the Test set, the 75 epoch model has an
Accuracy of 0.9643 and an F1 Score of 0.9642. For training, we use Keras with the adam
optimizer and binary cross-entropy loss function. We use a Intel(R) Core(TM) i5-7300HQ
CPU @ 2.50GHz processor laptop for our experiments.

Although the accuracy of the model on the test set is high (96.43%), it is not clear whether
the model infers classifications using the correct image features. In medical diagnostics,
it is imperative that a clinician is able to interpret and understand the reasons for the
classification label. Explanations from XAI techniques are meant to address this need.

4 Explanations

We generated individual explanations using each of the 3 XAI techniques, for a test set
of 56 images. For illustration, we show explanations for the same 6 benign and 6 ma-
lignant examples with each XAI technique in Appendix A.8 (LIME Figure 6, RISE Fig-
ure 7, SHAP Figure 8). Code associated with generating explanations can be found at
https://anonymous.4open.science/r/EvaluatingXAI-11DF/.

4.1 LIME

Our Python code for generating LIME explanations follows the steps described by [20]. For
image segmentation, we used Python’s scikit-image quickshift algorithm with empirically
chosen parameters. When generating explanations, we highlight the boundaries of the L
most important features for visibility. L was empirically chosen.
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Choosing Segmentation Parameters For segmentation we use the scikit-image quick-
shift algorithm, which has 3 tuneable parameters – kernel size, max-dist, and ratio. These
parameters and their effects are detailed in their documentation [7]. We use a small kernel
size of 2, a default max-dist value of 10, and a small ratio value of 0.1. This was because we
wanted many small segments with little emphasis on colour boundaries, to ensure that we
consider small regions of interest (ROIs), and do not quantify the pixels at the boundary of
the breast as incorrectly important.

Choosing L We define L as the number of most important features used in LIME ex-
planations. The L value will determine the features shown in our LIME explanations, and
also how many pixels are compared in the later One-Way ANOVA analysis. We will be
comparing lists of most important pixels as decided by each XAI technique - the lengths
of these lists will be equal for the 3 techniques, and will be the number of pixels within
the L most important LIME features for a given image. We will then calculate the % pixel
agreement between each pair of methods, defined as the proportion of pixels the lists have
in common. To determine our L value, we calculate the average % pixel agreements between
methods using L values of 3, 4, 5, 6 and 7. Averages are taken over the first 30 images in the
Validation set for the sake of time. The results are shown in Figure 4 (Appendix A.2). As
L increases, average pixel agreement increases between each pairwise technique comparison.
It is infeasible to keep increasing L as we are trying to compare only the most important
pixels. We have chosen L to be 6 as the first decrease in average agreement between all three
techniques occurs at L = 7. Also, in the case of the pairwise comparisons LIME-SHAP and
LIME-RISE, the jump in agreement from 6 to 7 is much smaller than from 5 to 6.

Observations. Figure 6 (Appendix A.8) shows 12 examples of LIME explanations - 6 for
benign scans and 6 for malignant. For both classes, some explanations highlight undesirable
features such as the image background. This is likely due to the variance in breast shape
throughout the dataset, which can clearly be seen in these examples. This effect could
be reduced by using larger datasets in the future. Looking at these explanations without
ground truth tells us little about whether they are highlighting genuine cancerous regions.
To evaluate LIME’s performance, we compare its outputs to those of RISE and SHAP, and
to a radiologist’s evaluation.

4.2 RISE

Our Python code for RISE follows the steps described by [18]. Figure 7 (Appendix A.8)
shows 12 examples of RISE explanations - 6 for benign scans and 6 for malignant. In these
heatmaps, the most important pixels are shown as red, and the least important are shown
as blue. We note that images have different importance value scales.

Observations. RISE generally assigns background pixels a medium relative importance.
We expect that this is again due to irregular breast shapes. LIME and RISE seem to generate
poor results for the same images - we define poor results as explanations which highlight
background regions as important. Figure 7 (j) shows a case where RISE performs poorly
for a malignant scan. LIME also performs poorly on this image, shown in Figure 6 (j). This
image has an irregular shape, which supports our thoughts. Figure 7 (c) and Figure 6 (c)
show the same issue for a benign scan.

4.3 SHAP

Our SHAP explanation code follows the steps described by [14]. Default values were used
for image segmentation, and SHAP’s Kernel Explainer was used. Figure 8 (Appendix A.8)
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shows 12 examples of SHAP explanations - 6 for benign scans and 6 for malignant. Segments
that contribute the most to the classification of the image are shown as green. The least
important segments are shown as red. We note that SHAP value scales are not consistent
across images.

Observations. Figure 8 (j) shows that SHAP performs poorly for the 4th malignant scan,
much like LIME and RISE - heavily influential segments exist at the top-left corner of the
image, which are background pixels. In most cases, the superpixels outside the boundary of
the breast seem to have low SHAP values. SHAP seems to generally disregard background
pixels with more success than RISE.

(a) LIME
(b) RISE (c) SHAP

Fig. 2: Explanations by LIME, RISE and SHAP for a benign mammogram.

5 Evaluating Explanations

Looking at the 3 explanations side-by-side for an image, as in Figure 2, we can start to infer
some agreement. However, due to the different explanation formats between techniques, the
amount of agreement is unclear. In addition to visualisations, we use statistical analysis to
compare the importance rankings of pixels between XAI techniques.

Visualising Agreement We use the 6 most important features in our LIME explanations,
and denote n to be the number of pixels within these features. We visualise overlap between
the n most important pixels given by each XAI technique, as in Figure 3. Generally, there
are always areas which all 3 techniques identify as highly important. However there are
more regions where they disagree. Sub-figures (b) and (d) from Figure 3 show cases where
explanations have performed poorly - defined as identifying background pixels as most im-
portant. This is likely due to irregular breast shapes within the dataset. Figures 3 (a) and
(c) show cases where explanations have multiple clear points of agreement.

5.1 One-Way ANOVA

One-Way ANOVA [22] compares the means of two or more groups for a dependent variable.
Our input groups are 3 lists of % pixel agreements between methods for each test set image,
labelled LIME-RISE, LIME-SHAP, and RISE-SHAP. To generate these lists, we identify
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(a) Benign 1 (b) Benign 2 (c) Malignant 1 (d) Malignant 2

Fig. 3: Overlap between the 3 XAI techniques regarding the n most important pixels. SHAP
is blue, RISE is red, LIME is green.

the n most important pixels according to each technique, where n is the number of pixels
within the top 6 LIME features for a given image. This is because LIME outputs binary
values for each pixel (presence in the L most important features) while RISE and SHAP
assign decimal importance values. We then calculate the % pixel agreement across each pair
of pixel lists for each image. We define % pixel agreement as the proportion of pixels the
lists have in common. Results are in Table 2 in Appendix A.3.

The only statistically significant test is Test 2, shown in Table 2. This tells us that of all
pairwise comparisons, there is only statistically significant difference in average pixel agree-
ment between the comparisons of LIME-RISE and RISE-SHAP. Analysing the statistical
composition of the pixel agreement lists supports this conclusion. Figure 5 (Appendix A.4)
visualises these results. The largest difference in mean (green triangles) is between LIME-
RISE and RISE-SHAP. Figure 5 and Table 3 (in Appendix A.4) show that the average
pixel agreement between techniques is startlingly low – 20 - 30% on pairwise comparisons,
and under 10% when comparing all three. However, these values still represent significant
numbers of pixels, as our images are large and have small ROIs.

5.2 Kendall’s Tau

Kendall’s Tau [9] is a measure of the degree of correlation between two ranked lists. The
purpose of Kendall’s Tau is to discover whether two ordered lists are independent. We
perform this test using the built-in Python scipy method, and set the inputs to be the
ordered lists of pixels and their importance values for each of the 3 XAI techniques, in the
form “(x, y): value”.

We apply Kendall’s Tau to each test set image 3 times – on the full pixel list, on the top n
most important pixels, and on the top 1000. We want to discover any statistically significant
correlation regarding the most important pixels to the classification between techniques -
if there is, and the Tau values are positive, this implies agreement. Results are shown in
Table 5 (in Appendix A.6). We use an alpha value of 0.05. From Table 5 we can conclude
that the only instances of statistically significant correlation come from the LIME-SHAP
comparison - both on the full length pixel list and the top n pixels. Positive Tau values
imply a positive correlation. The LIME-RISE comparison yields results closer to the 0.05
threshold while RISE-SHAP yields the worst results. In Figure 5, we saw that for the top n
pixel lists, LIME and RISE have the highest mean pixel agreements. This implies that while
LIME and RISE have higher pixel agreement regarding the presence of the same pixels in
the top n pixel lists, LIME and SHAP agree the most regarding pixel order.

We also evaluated our explanations using the RBO statistical test [32] to compare pixel
rankings. The results of this test are shown and discussed in Appendix A.5.
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5.3 Radiologist Evaluation

To assess our explanations with respect to the medical truth as understood by a clinician,
we consulted 2 independent radiologists and provided them with a subset of 10 images - 5
with benign and 5 with malignant classification, each of them associated with explanations
from the 3 different techniques. We were unable to gather an expert evaluation for the entire
test set due to limited availability of the radiologists, though we intend to expand this form
of XAI technique evaluation in future work.

The results gathered from this evaluation with 10 images for the first and second radi-
ologists are shown in Tables 6 and 7 (in Appendix A.7). In these tables,‘B’ in the column
heading refers to a benign image and ‘M’ refers to a malignant image. We requested the
radiologists to score each explanation between 0 and 3 to represent its agreement to radiol-
ogist identified image regions. The definition of the scores provided to the radiologists are
as follows:

0 = Explanation completely differs from expert opinion
1 = Explanation has some similarities, but mostly differs from expert opinion
2 = Explanation mostly agrees with expert opinion, though some areas differ
3 = Explanation and expert opinion completely agree

It is worth noting that no explanation earned a label of 3 from either radiologist – each
explanation either identified erroneous regions or missed important sections. LIME appears
to perform the worst within this subset of 10 images, while RISE performs the best. This
is likely because RISE is the only method which uses pixels rather than superpixels and
is therefore more fine grained when examining image regions and less likely to miss small
regions of interest. There does not seem to be any difference in explanation quality between
benign and malignant images for any technique.

The radiologists noted the following limitations with the explanation techniques:
– None of the explanations could identify the entire tumour region. Explanation methods

only highlight fragmented relevant regions and this is along with many irrelevant regions.
– Explanations for both malignant and benign tumours are distributed all over the image

and fail to take into account clinical features, like shapes of masses, margins, the density
of tissues, and structural distortion.

Our radiologist evaluation using 10 mammograms may not be representative of a real world
dataset. However, the issues highlighted by these comments are consistent problems - this
will be discussed in Section 6.

5.4 Threats to Validity

This research uses a small dataset of breast mammograms which may not be representative
of the population. We limit our classification task to benign or malignant - in reality there
are many types of lesion for both classes, which would appear differently in mammograms. In
future work, using a non-binary classifier alongside a more thorough radiologist evaluation
may allow us to better analyse the failures of our techniques. We have assumed that the
low cohesion between XAI techniques paired with the high model test accuracy indicates
that failures are due to the XAI techniques, and not the model itself. In future work we
will utilise multiple models and explore alternate XAI evaluation techniques [4] in order
to back up this claim. All empirical analysis regarding LIME parameter tuning and the
choice of L was based solely on the patterns within our data. They may not hold up when
compared to a larger dataset. Our XAI techniques by definition utilise randomization when
generating masks, therefore re-running our code will generate slightly different results to the
ones displayed here. This variation is not hugely impactful as we generally discuss average
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values in our statistical tests. Our code for LIME, RISE and SHAP is not the only way of
implementing these techniques - there are many public examples which implement the steps
described in the literature in slightly different ways. Because of this, another researcher’s
code may yield different results to the ones shown here.

6 Observations and Discussion

Each technique performs poorly on the same images. Our explanations highlight
the quality variation within the test set. Each XAI technique performed poorly (highlighted
background pixels as most important) on the same images, usually mammograms with
irregular breast shapes. This is likely due to our small dataset and the effect of blurring and
image re-sizing. It’s interesting to note that these problems don’t seem to impede the model
accuracy, only the quality of explanations.

Percentage pixel agreement between XAI techniques is extremely low. LIME and
RISE appear to have the most pixel agreement according to One-Way ANOVA. However,
these values are not high, with an average agreement of 28%. Combining Kendall’s Tau with
One-Way ANOVA, we find that while LIME and RISE consistently highlight the highest
proportion of the same important pixels, LIME and SHAP have the most similar pixel
orderings. This is supported by RBO.

Radiologist evaluation revealed explanations from all three techniques were un-
helpful. The radiologists found that RISE performed marginally better than the other two
techniques. Explanations from all three techniques, however, do not consider clinical fea-
tures within mammograms that are used to diagnose benign or malignant tumours, such as
shape of mass, boundary, and density. The explanations do not highlight the entire tumour
as important, but instead sparsely pick parts of the tumour along with many irrelevant
regions. The XAI techniques we have used have low levels of agreement with each other, as
well as low levels of agreement with the medical truth.

6.1 Discussion

The goal of this research was to determine whether taking off-shelf XAI techniques and
applying them to breast tumour classification was a feasible approach that would hold up
in the real world. Bringing together our observations tells us that this is not the case.

Though LIME and SHAP have the highest agreement in pixel orderings, these agreement
levels are still very low. Explanations from these techniques highlight some common areas,
though have significant disagreements and are therefore unreliable for use in diagnostics.
The most likely reason that LIME and SHAP have the highest pixel ordering agreement is
that these methods both utilise superpixels, while RISE does not. Discussing similarities in
pixel orderings is problematic in this context, due to the differing ways in which each of the 3
XAI techniques assign importance values to pixels. We note that these differences come from
both the underlying properties of each technique, and from our code architecture. LIME’s
binary scoring method is likely the reason behind the slightly higher % pixel agreement
statistics for pairwise comparisons involving LIME.

Each XAI technique works differently, and resulting explanations depend on many differ-
ent factors – segmentation, mask randomization, and tuneable parameters. While this is an
expected reason for some result variation, a higher level of cohesion in explanations was to
be expected. We identified that each technique incorrectly highlighted background regions
as being most important on images with irregular breast shapes. While this may have been
caused by the small size of the dataset, and image quality after pre-processing, we would
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have expected the model’s accuracy to also decline to reflect this, and it did not. We also
note that the techniques showed no difference in explanation quality for images from the
benign or malignant classes.

Regarding the medical truth according to a radiologist, RISE seems to produce the
most medically correct explanations, while the results of LIME and SHAP are often entirely
incorrect. This is likely because RISE involves no image segmentation. No explanations
were labelled as perfect - areas are always missed or incorrectly highlighted. We therefore
conclude that explanations generated by LIME, RISE and SHAP are in disagreement with
respect to both each other, and to the medical truth, and so do not perform reliably in
this context. The results of these explanation techniques do not match or consider what a
radiologist would want in a real-world context. Instead of pixels or superpixels, techniques
should identify clinically defined regions. This is a gap that needs to be bridged - we highlight
the need for specific, carefully defined techniques for explaining tumour images that take
clinical features into account.
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A Appendix

A.1 Model Training Results

The results of the experiment used to choose the 75 epoch model when considering the
impact of overfitting on our CNN, as discussed in Section 3.2 of this report.

Table 1: Validation Accuracy and F1 Score for CNNs trained with different numbers of
epochs.

Epochs Accuracy F1 Score
25 0.8214 0.7917
50 0.8214 0.7917
75 0.8750 0.8571
100 0.8036 0.7660

A.2 Choosing L Parameter for LIME

The results of the experiment used to choose L, as discussed in Section 4.1 of this report.

Fig. 4: Average % pixel agreement values between techniques taken over 30 images from the
Validation set.

A.3 One-Way ANOVA Results

We present here the statistical hypotheses used for the One-Way ANOVA test, as well as
the results gathered. This statistical test and its implications is discussed in Section 5.1 of
this report. The results are shown in Table 2.

The hypotheses for One-Way ANOVA are as follows:
– H0: There is no statistically significant difference between the means of the groups.
– H1: There is a statistically significant difference between the means of the groups.



Evaluating XAI for Breast Tumour Classification 13

Table 2: Results of One-Way ANOVA tests as described in the text. Bold results are sta-
tistically significant (alpha value 0.05).

Test Methods Compared F-statistic p-value
1 LIME-RISE, LIME-SHAP 3.7823 0.0544
2 LIME-RISE, RISE-SHAP 9.1855 0.0031
3 RISE-SHAP, LIME-SHAP 1.6193 0.2060

A.4 Pixel Agreement Statistics

Figure 5 presents a box plot representation of the % pixel agreement values between XAI
techniques, taken over all images in our test set. These results are discussed in Section 5.1
of this report. Table 3 also represents these agreement values.

Fig. 5: % Pixel Agreement between techniques for n most important pixels. Medians are
orange lines, means are green triangles.

A.5 Ranked Biased Overlap (RBO) Results

RBO [32] weights each rank position by considering the depth of the ranking being examined,
minimising the effect of the least important pixels. Taking two ranked lists as inputs, RBO
outputs a value between 0 and 1, where 0 indicates that the lists are disjoint, and 1 indicates
that they are identical. The results of RBO depend on the tuneable parameter p [32].
Small p values place more weight on items at the top of an ordered list. While this is
desirable, we must consider the difference in pixel importance value allocation methods
between techniques. RISE applies a decimal score to each pixel. SHAP applies the same
decimal score to each pixel within a given image segment. LIME uses binary values indicating
whether the pixels are in the top 6 most important features. We use large p values to properly
encompass similarities between larger groups of pixels with identical values.

Table 4 shows the average, minimum and maximum RBO values for each pairwise pixel
list comparison. The average RBO values for each comparison tell us that the pixel lists are
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Table 3: Statistical overview of percentage pixel agreements for all method comparisons.

Techniques Mean Std Min Max
LIME-RISE 28.27% 10.13% 7.74% 52.19%
LIME-SHAP 24.73% 8.75% 8.73% 48.16%
RISE-SHAP 22.45% 9.82% 0.00% 44.97%

ALL 9.48% 6.18% 0.00% 25.88%

almost disjoint. This is expected due to the differing pixel importance allocation methods as
discussed. Instead we consider the maximum values – LIME and SHAP generate lists that
are hugely identical for at least one instance in the test set, with maximum RBO values in
the range 0.69 – 0.78. The other pairwise comparisons do not come close to these numbers.
This observation supports Kendall’s Tau – both tests have identified LIME and SHAP as
the techniques with the highest agreement regarding pixel orderings.

Table 4: RBO results performed on full ordered pixel importance lists for each technique,
with differing p values. Values shown to 3 decimal places, though we note here that these
values are never exactly zero, just extremely small.

- RISE-SHAP LIME-SHAP LIME-RISE
p 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.000 0.000 0.077 0.697 0.763 0.782 0.002 0.023 0.265
Avg 0.000 0.000 0.003 0.019 0.027 0.045 0.000 0.001 0.011

A.6 Kendall’s Tau Results

We present here the statistical hypotheses used for the Kendall’s Tau test, as well as the
results gathered. This statistical test and its implications is discussed in Section 5.2 of this
report. The results are shown in Table 5.

The following hypotheses are used:
– H0: There is no statistically significant correlation, the lists are independent.
– H1: There is a statistically significant correlation in pixel orderings between lists, they

are not independent.

Table 5: Kendall’s Tau comparison results. n is defined in the text. Values are averages taken
over the test set, shown to 3 decimal places. Bold results are statistically significant.

Techniques p-values Tau
Full n 1000 Full n 1000

RISE-SHAP 0.123 0.125 0.249 0.003 0.002 0.001
LIME-SHAP 0.000 0.048 0.067 0.154 0.106 0.293
LIME-RISE 0.066 0.055 0.133 0.004 -0.006 0.014



Evaluating XAI for Breast Tumour Classification 15

A.7 Radiologist Opinions

Here we present the results as received from two independent radiologists, as well as defini-
tions of the scoring system used to evaluate explanations,

We requested each explanation be scored between 0 and 3 to represent its agreement to
radiologist identified image regions. The definition of the scores provided to the radiologists
are as follows:

0 = Explanation completely differs from expert opinion
1 = Explanation has some similarities, but mostly differs from expert opinion
2 = Explanation mostly agrees with expert opinion, though some areas differ
3 = Explanation and expert opinion completely agree

Table 6: Radiologist evaluation regarding explanations generated on a subset of 10 images.
B denotes benign, and M denotes malignant.

Image B1 B2 B3 B4 B5 M1 M2 M3 M4 M5
LIME 0 1 0 1 1 0 0 1 0 0
RISE 0 1 1 1 1 2 1 1 1 2
SHAP 0 0 0 1 2 0 1 1 1 0

Table 7: Second radiologist evaluation regarding explanations generated on a subset of 10
images. B denotes benign, M denotes malignant.

Image B1 B2 B3 B4 B5 M1 M2 M3 M4 M5
LIME 0 2 0 1 1 0 0 0 0 0
RISE 0 0 0 1 1 2 0 0 0 0
SHAP 0 2 0 1 0 1 0 1 1 1

We note that the opinions of the two radiologists above do not entirely agree with each
other - this is due to the fact that identifying all cancerous regions by eye, especially on be-
nign mammograms, is extremely difficult. The scans are also fairly noisy and in parts blurry
by nature. The purpose of this form of evaluation was not to have radiologists perfectly
highlight all cancerous regions - the goal was to simply analyse their responses to explana-
tions generated by each XAI technique, in order to judge the usefulness of the techniques
as diagnostic tools.

A.8 Explanation Examples

This section contains examples of image explanations as generated by LIME, RISE and
SHAP, described in this report. Figure 6 shows LIME explanations, Figure 7 shows RISE
explanations, and 8 shows SHAP explanations.



16 Rafferty, A. et al.

(a) Ben LIME 1 (b) Ben LIME 2 (c) Ben LIME 3

(d) Ben LIME 4 (e) Ben LIME 5 (f) Ben LIME 6

(g) Mal LIME 1 (h) Mal LIME 2 (i) Mal LIME 3

(j) Mal LIME 4 (k) Mal LIME 5 (l) Mal LIME 6

Fig. 6: Examples of LIME explanations generated for benign (Ben) and malignant (Mal)
breast mammograms.
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(a) Ben RISE 1 (b) Ben RISE 2 (c) Ben RISE 3

(d) Ben RISE 4 (e) Ben RISE 5 (f) Ben RISE 6

(g) Mal RISE 1 (h) Mal RISE 2 (i) Mal RISE 3

(j) Mal RISE 4 (k) Mal RISE 5 (l) Mal RISE 6

Fig. 7: Examples of RISE explanations generated for benign (Ben) and malignant (Mal)
breast mammograms.
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(a) Ben SHAP 1 (b) Ben SHAP 2 (c) Ben SHAP 3

(d) Ben SHAP 4 (e) Ben SHAP 5 (f) Ben SHAP 6

(g) Mal SHAP 1 (h) Mal SHAP 2 (i) Mal SHAP 3

(j) Mal SHAP 4 (k) Mal SHAP 5 (l) Mal SHAP 6

Fig. 8: Examples of SHAP explanations generated for benign (Ben) and malignant (Mal)
breast mammograms.


