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Abstract. Accurate nodule labeling and interpretable machine learning
are important for lung cancer diagnosis. To circumvent the label ambi-
guity issue of commonly-used unsure nodule data such as LIDC-IDRI,
we constructed a sure nodule data with gold-standard clinical diagno-
sis. To make the traditional CNN networks interpretable, we propose
herewith a novel collaborative model to improve the trustworthiness of
lung cancer predictions by self-regulation, which endows the model with
the ability to provide explanations in meaningful terms to a human-
observer. The proposed collaborative model transfers domain knowledge
from unsure data to sure data and encodes a cause-and-effect logic based
on nodule segmentation and attributes. Further, we construct a regular-
ization strategy that treats the visual saliency maps (Grad-CAM) not
only as post-hoc model interpretation, but also as a rational measure
for trustworthy learning in such a way that the CNN features are ex-
tracted mainly from intrinsic nodule features. Moreover, similar nodule
retrieval makes a nodule diagnosis system more understandable and cred-
ible to humans-observers based on the nodule attributes. We demonstrate
that the combination of the collaborative model and regularization strat-
egy can provide the best performances on lung cancer prediction and
interpretable diagnosis that can automatically: 1) classify the nodule
patches; 2) analyse and explain a prediction by nodule segmentation and
attributes; and 3) retrieve similar nodules for comparison and diagnosis.
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1 Introduction

Today’s AI systems for CT-based lung cancer diagnosis are highly desirable to
gain the trust of clinicians with high-quality data labels and dependable interpre-

H. Zhang and L. Chen–Joint first authors of this work.



2 H. Zhang et al.

tations [6, 10, 16]. However, based on standard Convolutional Neural Networks
(CNNs), most recent approaches [20, 26, 27, 24, 14] focus on statistical perfor-
mance of nodule heterogeneity discrimination within a given nodule dataset
LIDC-IDRI [2], instead of model interpretation and generalizability.

Normally, saliency maps [31][17] can retrospectively provide insight and in-
terpret the prediction by highlighting where the model is looking at. However,
this cannot explain its predictions in the same way as a human, who can classify
objects based on a taxonomy of attributes. This inspired us to design a model
which explains its predictions using a set of human-understandable terms. Dur-
ing the annotation of LIDC-IDRI [2][15], nine nodule attributes were assessed
by multiple radiologists, which are Subtlety (Sub), Internal Structure (IS), Cal-
cification (Cal), Sphericity (Sph), Margin (Mar), Lobulation (Lob), Spiculation
(Spi), Texture (Tex), and Malignancy (Mal). Except for Internal Structure (6
categories) and Calcification (4 categories), each of the attributes is rated on a
five-point scale and holds a degree relation (see Fig 1). Among these attributes,
the rating of Malignancy is especially subjective due to the lack of pathologically-
proven labels [2]. We term this kind of data as ‘unsure(-annotation) data’ by its
nature of uncertainty. In addition, the outline of each nodule is delineated by
multiple radiologists, providing the knowledge of nodule segmentation which, to-
gether with nodule attributes, can be considered as understandable concepts for
experts to interpret model decisions and make evidence-based diagnoses. This
also calls for the need of fair evaluation with a ‘sure dataset’ that has definite
benign-malignant nodule annotations confirmed by pathological examination.

Moreover, saliency maps typically rely on human-experts to examine the
corresponding results. By disclosing the salient information of a ‘black-box’ AI
system using interpretable tools, one can intuitively observe some failure cases
that the diagnosis model fails to assimilate reliable features from nodule re-
gions (Section 4.3 and Fig 2). These underlying problems are mainly owing to
the limitations of deep learning that its model often learns through superficial
correlations for data fitting, especially with limited supervision (e.g. patch-level
labels) [5]. Due to data scarcity, such circumstance is common yet easily over-
looked in medical image analysis [19]. However, saliency maps cannot directly
adjust the model if improper regions of attention are highlighted, leading to
false and confounding correlations[28]. This encourages us to endow the model
with the ability of self-regulation that automatically justifies the feature atten-
tion monitored by Grad-CAM [17]. To this end, we use a regularization strategy
where Grad-CAM is regarded not only as a post-hoc interpretation, but also as
a participant to debug model paired with the reference of nodule segmentation
maps.

The feasibility of leveraging Grad-CAM to debug a model has three consider-
ations: 1) it passes the sanity checks to highlighting attentions while many other
saliency methods are similar to ‘edge detectors’ [1][4]; 2) it applies to a wide
variety of CNNs for class-discriminative localization [17]; and 3) it is sensitive
to the properties of the model parameters, which helps to update model [1].
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Further, attribute-based nodule retrieval has the potential to improve the
interpretability for lung cancer diagnosis, since it searches for nodules in histor-
ically collected data that share similar human-understandable features relative
to the one being diagnosed. This mimics the clinical procedure, where clini-
cians make diagnoses based on their prior knowledge and experience indicated
by nodule attributes and segmentation.

The main contribution of this work includes: 1) establishment of a collab-
orative model for lung cancer prediction guided by the knowledge of nodule
segmentation and attributes; 2) introduction of model debugging with Grad-
CAM to ensure trustworthiness during training and testing; and 3) provision of
interpretable diagnoses for clinicians by attribute-based nodule retrieval.

2 Materials

Unsure dataset: According to the practice in [18], we excluded CT scans in
LIDC-IDRI [2] with slice thickness larger than 3 mm and selected nodules iden-
tified by at least three radiologists. On top of that, we only involve 919 solid nod-
ules (average Texture score = 5). In our work, we do not consider the learning
and generating of Internal Structure and Calcification because the inner-classes
of these two attributes are extremely imbalanced in this dataset [23]. Accordingly,
except for Texture, our work performs the regression of the other six attributes
whose average ratings hold sequential degrees. Each nodule segmentation map
is generated according to a 50% consensus criterion [13].
Sure dataset: The sure dataset consists of 617 solid nodules (316 benign/301
malignant) collected from 588 patients’ CT scans retrospectively in Shanghai
Chest Hospital with ethical approval. CT scans in this dataset were acquired by
multiple manufacturers where the slice thickness ranges from 0.50 to 3.00 mm
with an average of 1.14 (± 0.26) mm and the pixel spacing varied from 0.34 to
0.98 mm with an average of 0.60 (± 0.22) mm. Each nodule was labeled to a def-
inite class (benign or malignant) confirmed by pathological-proven examination
by surgical resection. The exact spatial coordinate and radius of each nodule
were annotated by two board-certified radiologists and confirmed by one senior
radiologist. In this study, we only include the nodules with a diameter between
3 and 30 mm [3][7]. Note that although there exist some other sure data from
NLST trial [21][22], Kaggle’s 2017 Data Science Bowl (DSB) competition1 and
LUNGx Challenge dataset [12], we do not include these datasets in our study due
to the lack of complete annotations such as position coordinates and pathologic
diagnosis.

3 Methodology

3.1 Collaborative Model Architecture with Attribute-guidance

In our study, we train a collaborative model (Fig 1) to jointly conduct nodule
segmentation and attribute regression tasks based on the annotation knowledge
1 https://www.kaggle.com/c/data-science-bowl-2017/
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Fig. 1. The schematic illustration of the proposed collaborative model for joint learn-
ing with sure and unsure data. The basic modules (green bottom color) consist of three
parts for feature extraction, nodule segmentation and feature fusion (follow the set-
tings of [28]). In the next stage (yellow), model encodes interactive features for nodule
attribute regression and classification, which are regulated with the rational measure
of model interpretation (blue).

of unsure data and perform nodule benign-malignant classification learned from
the nodule ground truth of sure data. The proposed collaborative model consists
of a backbone for nodule feature extraction, a module for nodule segmentation,
a fusion module that combines the features from backbone and segmentation
head, and two interactive branches for nodule attribute regression and benign-
malignancy classification.

The combined feature maps outputted by the fusion module are fed into the
two branches for regression and classification tasks, which act in an interactive
way to improve the discriminative ability for nodule prediction by exploring the
correlation from attributes to benign-malignant classes. To this end, we first use a
fully-connected (FC) layer to generate the intermediate embedding features, and
apply another FC layer to output the six attribute scores, which are supervised
by unsure data labels. For sure data classification, we first extract the attribute
features from the first FC layer of the regression branch, and concatenate these
features in the classification branch to make lung cancer prediction.

Different from other works [9][14], we treat the likelihood of Malignancy as
a normal attribute rather than the outcome to determine whether a nodule is
cancerous or not. This is mainly because: 1) the rating of Malignancy does not
have a one-to-one connection with its binary benign-malignant label and retains
an uncontrollable subjective bias [30][29]; 2) derived from the experts’ knowledge,
Malignancy reflects some observable nodule features such as size, shape and
brightness; and 3) training six nodule attributes together can implicitly model
the internal relationship between them. Such interactive architecture enables
more guidance knowledge from nodule segmentation and attributes for sure data
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to make a decision, although sure data do not have such detailed annotations.
We formulate the loss function for the three aforementioned tasks as follows:

L
(un)sure
tasks =gclogxc+(1−gc)log(1−xc)︸ ︷︷ ︸

Lsure
cls

+1−
2
∑N

i ysi g
s
i +θ∑N

i ysi +
∑N

i gsi +θ︸ ︷︷ ︸
Lunsure

seg

+ ∥yr−gr∥22︸ ︷︷ ︸
Lunsure

reg

(1)

in which, Lsure
cls is a binary cross-entropy (BCE) loss for the main classification

task where xc is the malignant probability after Sigmoid and gc is the benign-
malignant ground truth of sure data; Lunsure

seg is a Dice coefficient loss for the
auxiliary segmentation task where ysi and gsi denote the predicted probability
and class label of the ith voxel, N is the number of voxels, and θ is a smoothing
coefficient that prevents division by zero; Lunsure

reg is a mean square error (MSE)
loss for the auxiliary attribute regression task where yr ∈ R1×n is the regression
output, gr ∈ R1×n is the average attribute scores rated by radiologists, and n
equals to 6 (sub, sph, mar, lob, spi and mal).

3.2 Debugging Model with Semantic Interpretation

To deal with the crisis of trustworthiness that happens in the reasoning process
of a black-box model, we propose a controllable strategy to constrain the model
to diagnose ‘nodule’ rather than arbitrary voxels in the sense of statistics. With
the assistance of nodule segmentation map, Grad-CAM [17] is used to interpret
and debug model online for trustworthy learning from nodule-relevant features.

Let fk (x, y, z) represents the unit k at 3D spatial location (x, y, z) of feature
maps with length L, width W and height H outputted by the fusion module in
Fig 1. To obtain the Grad-CAM, we first compute the gradients of the malignant
probability xc with respect to the feature map fk, ∂xc

∂fk
. Then, the gradients are

global-average-pooled to generate the neuron weights:

ωk =
1

L×W ×H

∑
x

∑
y

∑
z

∂xc

∂fk (x, y, z)
(2)

Afterwards, due to using Sigmoid instead of Softmax, we perform a weighted
sum of the feature maps fk to obtain the Grad-CAM map with respect to xc

(benign: xc < 0.5; malignant: xc ⩾ 0.5):

Grad-CAM (x, y, z) = (xc − 0.5)
∑
k

ωk fk (x, y, z) (3)

which is then rescaled to [0,1] by min-max normalization.
To enable trustworthy learning, we regulate the Grad-CAM to concentrate

attention on the nodule regions. Guided by the online generated nodule segmen-
tation map, the average Grad-CAM values of nodule regions and background re-
gions can be calculated, which are Grad-CAMavg

ndl ∈ [0, 1], and Grad-CAMavg
bkg ∈
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[0, 1]. To drive the model to express the features of target object, we enforce
Grad-CAMavg

ndl larger than Grad-CAMavg
bkg , which is formulated as follows:

Lsure
debug = ∥xc − 0.5∥l1 max

{
0, Grad-CAMavg

bkg −Grad-CAMavg
ndl + λ

}
(4)

where λ is a margin parameter (empirically set to 0.5 in this work) and ∥xc − 0.5∥l1
is an adaptive coefficient that encodes the uncertainty of xc so that model can
strengthen the optimization for other tasks if a nodule prediction is of low con-
fidence. In our practical application, we merged the item of (xc − 0.5) in Eq.(3)
and Eq.(4), and made a simplification.

3.3 Explanation by Attribute-based Nodule Retrieval

To enable the interpretable lung cancer diagnosis, we can provide explainability
through attribute-based nodule retrieval. Based on the nodule attribute scores
xr ∈ R1×6 generated by the collaborative model, we can retrieve K most similar
nodules within the historically collected data for the one being diagnosed. The
similarity metric used for retrieval is Euclidean Distance. By reading these closely
related historical nodule cases, clinicians can acquire more understandable evi-
dence and clues. Meanwhile, the auxiliary attribute scores work as assist-proofs
for the diagnosis results and support the user’s final decision.

4 Experiments and Results

4.1 Implementation

In data preprocessing, we first conduct lung segmentation to restrict the valid
nodule regions inside the lungs. Then, inspired by the fact that radiologists
change CT window widths and centers for nodule diagnosis, we mix lung window
[-1000, 400 HU] and mediastinal window [-160, 240 HU] together to generate the
nodule inputs. Each window is normalized to the range of [0, 1] and resampled
to 0.5 mm/voxel along all three axes using spline interpolation. The final image
volume extracted for each nodule is a cube of 64×64×64 voxels with 2 channels.
Data augmentation methods include random flipping, rotation and transposing.

All the experiments are implemented in PyTorch with a single NVIDIA
GeForce GTX 1080 Ti GPU and learned using Adam optimizer [11] with the
learning rate of 1e−3 (100 epochs). The batch size is set to 1 and group normal-
ization [25] is used after each convolution operation. 5-fold cross-validation is
performed, with 20% of the training set used for validation and early stopping.

4.2 Quantitative Evaluation

To provide the detailed evaluation of the model performance, we used evaluation
metrics including Accuracy, AUC, F1-score, Sensitivity, Specificity, Precision,
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Table 1. Quantitative classification performance of comparison methods and ablation
study evaluated with sure data by 5-fold cross-validation (threshold=0.5).

Method Accuracy AUC F1-score Sensitivity Specificity Precision Precisionb

Baselines 1 3D ResNet[8] 64.03 73.26 63.09 64.05 64.00 63.63 65.97
2 Transfer learning[30] 67.26 73.99 65.62 64.09 70.27 67.90 67.31

Ablation

3 - 67.29 76.28 65.85 64.40 70.03 69.00 67.24
4 attr 67.28 77.32 66.03 65.40 69.06 68.56 67.94
5 debug 69.39 76.16 67.92 66.44 72.19 69.77 69.30
6 attr+debug 69.20 76.57 68.86 70.74 67.74 67.98 71.49
7 mal+debug(CAM[31]) 68.24 77.29 67.22 67.39 69.04 68.69 69.56
8 attr+concat 69.70 76.89 69.16 69.72 69.67 69.63 71.08
9 attr+concat+debug 71.16 77.85 71.19 72.73 69.67 70.31 72.88

and Precisionb (Precision in benign class). The results summarized in Table 1
illustrate the performance of nodule benign-malignancy classification tested on
sure data in fair comparison with a normally-used 3D ResNet [8] and a state-
of-the-art method [30] which also integrates the knowledge of unsure data. The
results show that our best model (the last row) has the ability to predict lung
cancer far better than the two baselines, especially for Accuracy, F1-score and
Sensitivity. To analyze the impact of each component of our proposed method,
we conducted ablation studies in the phase of ‘Model Output & Debugging’
in Fig 1 for: (3) only with basic modules; (4) only adding attribute regression
(FC: 256 × 6); (5) only adding model debugging; (6) without attribute feature
concatenation; (7) only adding one attribute (‘malignancy’, which is the most
popular one) for regression and applying CAM [31] for debugging [28]; and (8)
without model debugging with Grad-CAM. This shows retaining the single at-
tribute regression or model debugging can barely exceed the performance of 3D
ResNet, Transfer learning and the model only with basic modules. The integra-
tion of feature concatenation and model debugging plays an important role in
improving the performance of nodule benign-malignant discrimination and have
a positive effect on reducing overfitting.

4.3 Trustworthiness Check and Interpretable Diagnosis

Trustworthiness Check: Given the fact that there is no guarantee for a black-
box model to learn nodule-relevant features with respect to model outputs, it is
necessary for the human-experts to examine its trustworthiness before consider-
ing whether to adopt the model decisions. As illustrated in Fig 2, the saliency
maps (Grad-CAM) of the 1st and 2nd rows present inexplicable patterns scat-
tered in nodule patches. This implies that 3D ResNet and Transfer learning
methods fail our trustworthiness check and can be misleading in real clinical
practice. Compared with the 7th method (the 3rd row), our best method (the
4th row) not only appears more effective constraint to extract reliable features
in nodule regions, but also has a better quality of nodule segmentation (yellow
outline) with a light-weight segmentation module. This benefits from the multi-
attribute guidance for nodule discrimination and the superiority of Grad-CAM
for model debugging, with their weights being updated by better achieving both
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Fig. 2. Examples of saliency maps obtained by methods from Table 1. Examples are
taken from the central slices of their 3D patches, where the scores are the predicted
probabilities to each class and yellow contours denote the nodule segmentation outlines.

nodule segmentation and classification performance. Note that, our method does
not completely inhibit feature learning from nodule background according to the
last row.
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Fig. 3. Examples of the attribute-based retrieval for similar nodules (top 3, right part),
with respect to the nodule being diagnosed (left part). Attribute scores and 3D seg-
mentation maps are generated by the pre-trained model.

Interpretable Diagnosis: Fig 3 shows the examples of attribute-based nodule
retrieval using our best model. For the nodule being diagnosed, our system,
working as the role of an explainer, can generate its segmentation map and
attribute scores, based on which, historically collected nodules with the most
similar characteristics can be automatically recalled to support the clinicians to
make confident diagnoses.
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5 Conclusions

Under the fair evaluation of sure data, this paper introduced a new formulation
to improve the performance of nodule classification, as well as enhance the trust-
worthiness of model reasoning and explainability for lung cancer diagnosis. Our
superiority mainly comes from the effective cooperation of unsure and sure data
knowledge and regulative application of model online debugging with seman-
tic interpretation (Grad-CAM). These innovations empower a diagnosis system
more credible and practical during collaboration with clinicians. We believe our
formulation can be applied to other classification tasks, where the object seg-
mentation (hand-crafted or automatic) and fine-grained attributes are available
to provide regulation for interpretable learning and understandable diagnosis.
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