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Abstract. The performance of predicting biological markers from brain
scans has rapidly increased over the past years due to the availability of
open datasets and efficient deep learning algorithms. There are two con-
cerns with these algorithms, however: they are black-box models, and
they can suffer from over-fitting to the training data due to their high
capacity. Explainability for visualizing relevant structures aims to ad-
dress the first issue, whereas data augmentation and pre-processing are
used to avoid overfitting and increase generalization performance. In this
context, critical open issues are: (i) how robust explainability is across
training setups, (ii) how a higher model performance relates to explain-
ability, and (iii) what effects pre-processing and augmentation have on
performance and explainability. Here, we use a dataset of 1,452 scans
to investigate the effects of augmentation and pre-processing via brain
registration on explainability for the task of brain age estimation. Our
multi-seed analysis shows that although both augmentation and regis-
tration significantly boost loss performance, highlighted brain structures
change substantially across training conditions. Our study highlights the
need for a careful consideration of training setups in interpreting deep
learning outputs in brain analysis.

Keywords: Brain Age Estimation · Deep Learning · Explainability ·
Interpretability · Guided Backpropagation.

1 Introduction

Estimating the age of the brain is essential for detecting abnormalities in brain
development, such as neurodegenerative disease or cognitive impairment [20],
and has been extensively studied over the past years. As with many other data
processing tasks, the advent of deep learning coupled with large, open datasets
has significantly increased performance in this domain. These high-performance
models, however, suffer from potential overfitting issues given their high capacity
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and also need to be applied in an explainability framework to open the "black
box" [19]. A crucial step for avoiding overfitting has been to use various augmen-
tation strategies that are supposed to increase the robustness and generalizability
of the models [30]. Similarly, pre-processing of brain scans, such as anatomical
registration, can be done to "help" the models perform better. Explainability
methods are then used to create activation maps of those pixels/voxels that are
relevant for the model predictions - typically via gradient methods.

We can therefore evaluate deep learning models by their intrinsic metric (i.e.,
the value of its loss function), but also by their explainability maps (i.e., to what
degree do the highlighted regions correspond to known factors of a biological
change). In this context it is important to note that training of deep learning
models is inherently stochastic due to random weight initialization, dropout,
batch size, randomized data augmentations, and stochastic optimization. Hence,
running a different "seed" will typically lead to a different sets of weights - even
for the same, final loss value. With this in mind, two important open questions
remain for gauging the quality of the resulting explanability activations: (i) to
what degree are explainability maps consistent across different seeds? and (ii)
what effects do pre-processing or augmentation strategies have on explainability?

Here, we present to our knowledge the first, larger-scale study to inves-
tigate the effects of seeds, as well as data augmentation and registration in
terms of both performance and explainability for the task of brain age predic-
tion. Overall, our contributions are three-fold: first, making use of the stochas-
tic variability across seeds we show that data augmentation results in statis-
tically better (lower) loss compared to non-augmented training for both regis-
tered and non-registered brain scans. Second, we investigate the explainability
maps via Guided-Backpropagation [31], and find that augmentation results in
better-interpretable models, as different seeds share more common voxels. Third,
and most importantly, our study uncovers significant changes in explainability
already for one deep learning framework across seeds and training setups, high-
lighting the need for vigilance in interpreting deep learning models for brain age
estimation.

2 Related Work

Estimation of age from brain scans evolved from "classic" machine learning
regressors to current deep neural networks. As raw voxel images were not suitable
for the former models to predict age, brain scans were often processed into
features first, which were then regressed onto age [2, 4, 23,33].

The advent of deep learning and the availability of larger brain datasets also
changed performance in this task: convolutional neural network architectures
showed substantial improvement in age prediction over the past years - both in
2D (analyzing slices of brains, e.g. [13]) or 3D (analyzing the voxels directly,
e.g. [3, 5, 12,18,25]).

In addition to improvements in model architecture, data augmentation, in
which the model is fed randomly-transformed scans during training, has been
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shown to improve performance and to avoid overfitting [30] (see [3] for brain age
estimation discussion).

Next, explainability has been added to these black-box models [19], since the
prediction of age alone is not sufficient for many applications, as practitioners
would also like to know or cross-check which parts of the brain actually are
involved in aging. Among the many explainability frameworks, GradCAM [29]
and Guided Backpropagation [31] are the most widely-used ones, also in the
context of age estimation [12].

Another critical aspect of deep learning models is their stochastic nature: var-
ious elements of the training are inherently random, which means that different
initializations may lead to different models. Recently, this has led researchers to
analyze several, randomly-initialized models in their tasks. This can be done to
improve performance (ensembling [18]), but also to gauge the statistical robust-
ness of the results [23]. Here, we take the latter approach and launch an in-depth
investigation of explainability across different training setups with seeds used to
better analyze the inherent variability of the resultant models.

3 Methods

This section describes the dataset and training setups for brain age estimation.

Dataset #N Age Mean(±std) Range

IXI [11] 312 50.37 ± (15.932) 20 - 86
Dallas [24] 273 55.789 ± (19.478) 20 - 89
Oasis1 [22] 315 65.698 ± (9.313) 18 - 94
Oasis3 [17] 552 54.048 ± (21.6965) 42 - 97

Table 1: Left: Dataset demographics. #N = number of scans. Right: Age distri-
bution of train (orange) and test (blue) sets. Y-axis denotes density.

Dataset: We used a total of 1,452 brain scans from publicly available datasets
(see Table 1). To better gauge generalizability, we kept the same 10% (146 scans)
as a hold-out test set for all runs. During training, the remaining 90% of the
brains, were split again in a 90 train/10 validation set ratio (with varying seeds)
to introduce variability for each of 100 fixed random seeds.

Preprocessing: All brains were preprocessed starting with skull stripping
and normalization through FreeSurfer 6.0 [8]. We then used dipy [7] to register
the scans onto the standard MNI152 template including symmetric diffeomorphic
registration, removing border voxels outside the brain. All voxels were Min-Max
scaled and the scan was cropped to 96× 96× 96 voxels.

Augmentation: To investigate the effects of augmentation, we chose a set
of the three most popular methods: a random mirroring swapped left and right,
whereas random affine (-10 to 10) and random elastic deformations (number of
control points 7, max displacement 7.5) were used to further increase anatomical
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variability. For all augmentations, we used the torchio library [26]. During each
mini-batch, one augmentation method was selected at random.

Training setup: We used a standard ResNet50 architecture upscaled to 3D
[10], with an Adam optimizer with betas 0.9 and 0.999 and a base-learning rate
of 0.0001. The loss was a mean squared error. Given the different data domains,
the ResNet was non-pretrained. For each experiment configuration, 100 different
runs were done on 2 NVIDIA GeForce RTX 2080 Ti via the same 100 random
seeds. Early stopping strategy was applied with 20 epochs of patience triggered
by validation data. Multiple model checkpoints were saved to trace performance
across training. Overall performance for age prediction was only determined on
the hold-out test set. All codes are available at https://github.com/1pha/brain-
age-prediction.

Statistical testing: To look for the effects of training setups on performance
and epochs, we conducted two-sample t-tests across seeds on the hold-out test
set. From each seed, we chose the last and best metrics during the training
procedure.

Explainability: In addition to statistical comparisons, we also used the dif-
ferent seeds to analyze the consistency of resultant explainability maps. Given a
trained model checkpoint and one brain scan, we applied Guided-Backpropagation
(GBP) [31]. The resultant map of gradients from the mean absolute error (MAE)
loss with respect to the feature map was then upsampled to the original input
brain scan size, 96 × 96 × 96. Obtaining an average explainability map for one
checkpoint started with inferring the 146 brains of the test set, followed by GBP,
z-normalizing, and then averaging.

As the only "objective" metric to compare models is the loss metric, we
gathered checkpoints from seeds once they reached one of five pre-defined loss
thresholds (called "Phases", see Table 2 for threshold values), and aggregated
their corresponding explainability maps. We retrieved two quantities from the
maps: consistent voxels and highlighted regions. To create the former, as the
explainability methods assign a higher value to the voxels that influence the
prediction, values lower than the 5% quantile values in the aggregated maps were
discarded. In order to determine consistently-contributing voxels for predicting
age, we chose those that were implicated in more than half of the seeds. The
number of agreeing voxels was selected as an important metric for the robustness
of the explainability maps. Next, the chosen top 1% percentile values were than
aggregated by regions denoted by the AAL ATLAS [27]. Their results were
visualized with nilearn [1].

4 Results

4.1 Performance

Figure 1 (a) shows that augmentation overall results in significant improvements
in terms of MAE for both non-registered and registered setups across seed dis-
tributions. This improvement is also visualized in Figure 1 (b), which shows the
evolution of MAE across training for the different setups. As can be expected,



A multi-seed analysis for brain age estimation 5

however, augmentation also results in significantly longer training of on average
10 to 13 epochs. We note that prediction performance is somewhat lower com-
pared to other works [18, 25], which is likely due to factors including a slightly
smaller dataset as well as less aggressive model optimization. Importantly, how-
ever, our main objective was to focus on relative differences due to augmentation
and pre-processing.

(a) Distribution of best test MAE results
for all seeds.

(b) Mean and standard deviation of MAE
across epochs.

Fig. 1: Mean absolute error statistics on hold-out test dataset. (N.)Aug. = (Non-
)Augmented; (N.)R. = (Non-)Registered

4.2 Voxel agreement

We expect that voxels that were repeatedly included in the top-quantiles of the
explainability maps across seeds would imply enhanced robustness in explain-
ability. Voxel agreements across conditions are visualized in Figure 2 - see also
Table 2 for detailed values. Here, we find that the augmented-registered condition
surpassed the other setups. This seems to be a robust finding also throughout
training (Figure 2), suggesting that this specific training setup identified reliable
voxels early.

For both non-registered conditions (blue curves), the number of agreeing
voxels was considerably lower compared to the registered conditions (red curves).
This is a result that may be expected since models trained with non-aligned
brains would find it harder to localize significant regions.

Similarly, when looking at the effects of augmentation, we also found more
agreement in general across seeds (compare solid versus dashed lines), indicating
that augmentation aids identification of agreeing voxels. Nonetheless, the "effect
size" of augmentation on agreement is lower than that of registration.

4.3 Atlas-based analyses

We next conducted an an atlas-based analysis using the top-1% saliency values
from each seeds across training procedures and configurations. In this analysis,
we chose to aggregate all top-1% values, regarding the variability across seeds as
noise to be averaged out. We then averaged the activated voxels in each of the
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Phase Non-augm./Reg. Augm./Reg.

(Threshold) #C #E #L #C #E #L

1 (32) 100 1.76 29.75 100 1.74 29.82
2 (22) 100 2.03 22.55 100 2.02 22.84

3 (7.27) 100 6.13 7.24 100 10.54 7.23
4 (6.0) 53 36.52 5.92 83 36.86 5.97
5 (5.4) 7 53.42 5.34 26 57.03 5.35

Phase Non-augm./Non-reg. Augm./Non-reg.

(Threshold) #C #E #L #C #E #L

1 (32) 100 1.93 30.35 100 1.89 30.45
2 (22) 100 2.19 24.35 100 2.17 23.95

3 (7.86) 98 16.33 7.83 99 10.78 7.83
4 (6.95) 15 48.66 6.92 96 30.05 6.91
5 (6.1) 0 0 0 23 62.0 6.07

Table 2: Information on explainability maps for different checkpoints across
training setups. Columns denote as follows: #C number of checkpoints reaching
given MAE threshold; #E average training epochs for chosen checkpoints; #L
average loss for chosen checkpoints.

atlas-defined brain regions and ranked these across training setup and phases -
see Figure 3.

For this type of analysis, the main differences were due to registration setups:
the registered conditions mostly implicated subcortical regions including CSF,
3rd & lateral ventricles, or parahippocampal regions. In contrast, non-registered
models mostly focus on the occipital lobe - cuneus, occipital gyrus and calcarine
fissure. Both setups, however, showed high rankings for the brainstem.

4.4 Region Validation

To check the alignment between the depicted regions from our models and the
brain age literature, here we briefly situate our results in the context of published
results both in the brain imaging and the deep learning literature.

One of the consistently-nominated brain region from previous research is the
lateral ventricle along with the 3rd-ventricle, most notably due to an increase
of width [15, 16, 32]. This is clearly matching our results in Figure 3, where
these regions for the augmented-registered model have high-rank with minimal
deviations.

Similarly we find reports that cerebellar and brainstem volume shrink with
age [21], alongside a reduction in thalamic volumes [6,14]. Again, all three regions
were implicated in the augmented-registered condition at much higher ranks
compared to other training setups.

Ranked regions were also compared with those other published studies on
brain age prediction with deep learning. [18] and [12] focus on the lateral, 3rd
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Fig. 2: Evolution of agreement across training. The shaded areas indicate the
95% confidence interval across seeds.

& 4th ventricles and the CSF. The medial temporal structures including the
parahippocampals and brain stem are coherent with [28]. [23] mentioned the
gray matter cortices, whereas our models mainly focused on the subcorticals
and sulci. Overall, significant changes/atrophies in cortical areas could not be
found by our work, even with softened thresholds.

5 Conclusion

In our work, we showed that pre-processing - a process that tries to minimize
anatomical variability for the same voxel - and augmentation - a process that
tries to make the model more sensitive to anatomical variability - both improve
the performance of brain age prediction. Importantly, we showed this by means
of a larger-scale sample that exposed the intrinsic variability of models with
different initialization seeds. Going one step further, we used the resultant ex-
plainability maps at well-defined, comparable loss thresholds to trace the evolu-
tion of predictive brain regions across training phases and training setups. Here,
we found that augmentation on registered brains led to the highest agreement
across seeds, suggesting the most robust explainability results for this condition.
The brain regions implicated in aging for this training setup focused mostly on
previously-implicated subcortical brain areas albeit with little to no activation of
cortical areas. Overall, our results highlight the need for caution in interpreting
bio-markers for brain age prediction (and, similarly, for other tasks) from only
one model - a finding that is also visible in the remarkable variability of brain
regions implicated in other studies.

Overall, we believe that our study is an important first step in making more
replicable and robust statements about bio-markers from brain scans. Future
studies will need to generalize these results with larger brain datasets, test ad-
ditional deep learning architectures (as for example transformers [9]), as well as
compare different explainability frameworks.
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(a) Ranking Charts of RoI saliency value from Guided-Backpropagation.

(b) Guided-Backpropagation visualization with augmented-registered condi-
tion on the last phase.
Fig. 3: Ranking of region of interest from AAL ATLAS across all seeds.
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