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Abstract. Do black-box neural network models learn clinically relevant
features for fracture diagnosis? The answer not only establishes reliabil-
ity, quenches scientific curiosity, but also leads to explainable and verbose
findings that can assist the radiologists in the final and increase trust.
This work identifies the concepts networks use for vertebral fracture diag-
nosis in CT images. This is achieved by associating concepts to neurons
highly correlated with a specific diagnosis in the dataset. The concepts
are either associated with neurons by radiologists pre-hoc or are visu-
alized during a specific prediction and left for the user’s interpretation.
We evaluate which concepts lead to correct diagnosis and which concepts
lead to false positives. The proposed frameworks and analysis pave the
way for reliable and explainable vertebral fracture diagnosis. The code
is publicly available.5
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1 Introduction

Osteoporosis is regarded as one of the most relevant diseases of the elderly, with
22 million women and 5.5 million men affected in the EU alone [5, 14]. Early
detection of incidental osteoporotic fractures in routinely-acquired computed
tomography (CT) scans is important, as these often remain clinically silent for a
long time [12]. Furthermore, osteoporotic fractures are an independent predictor
of further fractures with an approx. 12-fold increased risk and are associated with
an 8-fold increased mortality [6, 24]. The sequelae include major socioeconomic
consequences and an individual reduction in quality of life [4, 16, 13, 7]. Despite
the clinical significance, around 85% of osteoporotic fractures are not adequately
described in the radiological reports of routinely acquired CT scans, possibly as
a result of a disproportionate increase in radiologists’ workload [31, 2].
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Automatic detection of vertebral body fractures with deep learning models
can remedy this and increase incidental findings. However, most of these methods
are black-box models that do not give insights into the decision-making process.
Revealing the inside of these models can allow for investigation of failure cases
and, when addressed, increase robustness and trust in the system.

Thus far, interpretable diagnosis is mostly investigated via feature attribution
(saliency) approaches [19] such as class activation maps [36]. These interpreta-
tions reveal where important features for the prediction are located. Although
being a valuable tool for running a sanity check on the network inference mech-
anism, feature attribution does not disclose further information regarding pre-
diction. Moreover, only knowing about the location of important features is not
useful information for fracture diagnosis as it is easy to see where the fracture is
located, and it is of interest to know “what” features are important.

To this end, we leverage the network dissection [3] approach and analyze the
internal units of the neural network and their associated clinical concepts, in-
spired by its applications in chest radiography [19] and mammography [32]. Sub-
sequently, we ask the clinicians to identify the concepts associated with highly
correlated activations by inspecting the inputs that activate those neurons the
highest. We investigate what concepts the network has learned and whether they
are aligned with what clinicians use. Moreover, we visualize the concepts used for
prediction on a single input to get a conceptual understanding of the decision-
making mechanism of the model. We perform the analysis for on the open-source
VerSe [29] dataset and a larger private dataset procured at our hospitals. The
objective of this work is to investigate what features the network uses for frac-
ture diagnosis, whether they overlap with clinical knowledge, and how they can
be used for more verbose and explainable fracture diagnosis.

1.1 Related Work

Vertebral Fracture Detection Most approaches use Convolutional Neural
Networks (CNN) on Computer Tomography (CT) spine images. CNN-based
methods can be categorized into 2D and 3D convolutions. 2D methods usually
rely on a feature aggregation with Recurrent Neural Networks to model inter-
slice dependencies [1, 30]. Husseini et al. [15] reformat the image to use the most
informative mid-sagittal slice of each vertebra and, in addition to fracture detec-
tion, grade fractures using an ordinal regression loss for representation learning.
Pisov et al. [27] also reformat the 3D volume to retrieve a spine-centered 2D
image and detect key points for measuring the compression of each vertebra,
detecting and grading fractures.

Detecting fractures on a voxel-level and then post-processing, Nicolaes et
al. [26] for the first time used 3D convolutions for the detection of vertebral
fractures. More recent works using 3D convolutions include modeling the de-
pendency between the 3D volumes of each vertebra with a sequence-to-sequence
model [8] and detecting osteoporotic fractures on a patient-level [33]. Related to
the task of fracture detection and grading, recently Li et al. [22], and Feng et al.
[10] explored the distinction between benign and malign vertebral fractures.
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Interpretability of models is narrowly explored in the domain of vertebral frac-
ture diagnosis and [34] interprets the models by feature attribution (saliency)
approaches to identify which regions in the input contributed to the prediction. In
fact, in most medical image analysis applications, feature attribution is the dom-
inant approach [19]. However, attribution methods are limited in the information
they can disclose regarding the decision-making mechanism of the model. More-
over, the feature attribution problem remains largely unsolved, and although
there are many attribution approaches (CAM [36], LRP [25], DeepSHAP [23],
IBA [28, 35, 20]. . . ), the methods disagree with the identified important features
[18, 35, 17]. This disagreement problem is a caveat for domain experts while
utilizing these attribution methods. Thus there is a need for interpretation ap-
proaches that are reliable and reveal more information than “which region is im-
portant.” Network Dissection [3, 32, 19] allows to identify the concepts encoded
by internal units (neurons) of the network. Methodologically, our work differs
from [19, 3] in that we do not use an annotation dataset and instead identify the
highly correlated neurons with the output. Furthermore, the main contribution
of this work is establishing trust by investigating the alignment between the
learned concepts and vertebrae fracture analysis domain knowledge.

2 Methodology

2.1 Vertebral Fracture Detection

We model the vertebral fracture detection task as a binary classification problem,
where the positive class indicates a fracture. The network function is defined as
fΘ(x) : RH×W×D → R. The predicted probability is ŷ = sigmoid(fΘ(x)). We
use a 3D U-Net [9] for the vertebral fracture classification task, replacing its
upsampling path with a classification head.

2.2 Semantic Concept Extraction (Correlation)

In neural networks, each neuron is activated by a specific input pattern. The cor-
responding pattern of each neuron can be equivalently deemed as its associated
concept. In convolutional neural networks, each neuron can be considered either
as an activation map or an activation unit within the map. As the activation
units within an activation map all represent the same function (only for different
spatial locations), they represent the same concept [3]. For our purposes, we re-
fer to the output of a convolutional filter after the activation function as a unit.
We denote the output activations of the final convolutional layer of the network
by the tensor A ∈ RH

′
×W

′
×K where K represents the number of channels in

that layer. After computing the distribution of individual unit activations ak, we
determine the top quantile level Tk for each unit k such that P (ak > Tk) = 0.005
[3]. We then derive the binary segmentation mask Mk(xxx) := Ak(xxx) > Tk and
denote the set of enabled units for an input xxx as Ex := {k |

∑
Mk(xxx) > 0}.
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Positive Prediction Correlation Some units might capture concepts that are
highly useful to determine whether a sample is fractured, establishing a stronger
correlation with a true positive prediction than other units. To find these units,
we compute:

ck :=

∑
x∈P 111Ex

(k)

|P |
(1)

where P is the set of positive samples and 111 is the indicator function. With
ck1

> ck2
> ..., k1 is the unit most strongly correlated with a true positive

prediction, followed by k2.

2.3 Visualization of Highly Correlating Concepts at Inference

Due to the variability of observed defects in fractured vertebrae, different con-
cepts are relevant during the inference of a sample. We compute the relevance
of a unit k during inference of input xxx as follows:

rk :=
∑

Mk(xxx)⊙Ak(xxx) (2)

For units k1, k2 with rk1
> rk2

, k1 is more relevant for the inference of xxx than k2.
Now, when visualizing highly correlated concepts for a sample xxx, we compute
the inference relevance of each detector unit and display the activation maps
Ak1(x), Ak2(x), ... with rk1 > rk2 > ..., showing the corresponding responses for
the input sample xxx.

3 Experimental Setup

Data Preparation The network is trained on the VerSe dataset [29] as well as
an in-house dataset acquired at Hospital A and Hospital B. The latter includes
465 patients with a median age of ∼ 69(±12) years, containing a heterogeneous
collection of field of views, scanner settings, and healthy and fractured vertebra,
including metallic implants and foreign materials. This combined dataset con-
tains CT scans of patients with healthy and fractured vertebrae of osteoporotic
or malignant nature from a heterogeneous collection of CT scanners. To address
the inherent class imbalance in the data, negative samples are undersampled
and positive (fractured) samples are oversampled in training to achieve a perfect
class balance each epoch. As osteoporotic and malignant fractures rarely occur
in cervical vertebrae (C1-C7), they are excluded from the dataset. We extract
96× 96× 96 sized 3D patches for each vertebrae with a 1mm resolution. These
patches are centered on the vertebral body and oriented along the spine by
aligning the vertical axis with a spline constructed with the vertebral centroids
provided by the dataset similar to [15]. The intensity values of the resulting crops
are cropped to a Hounsfield Unit range of [−1000, 1000] and then scaled to [0, 1].
During training, intensity (Gaussian noise, smoothing, and contrast) and heavy
spatial data augmentations (similarity transformation and elastic deformation)
are applied. For these tasks, NiBabel 3.2.1 and MONAI 0.8.0 are used.
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Implementation Details The 3D U-Net is implemented in PyTorch Lightning
1.5.10 on top of PyTorch 1.10.2, and trained using the Adam [21] optimizer
(learning rate 0.001) without weight decay. Training is concluded if the validation
F1 score has not improved for 50 epochs. Dropout with probability 0.3 is applied.

4 Results and Discussion

In the following, we first evaluate the performance of our vertebral fracture
detection neural network before dissecting it into its individual detector units.
We then validate detector units highly correlated with a true positive prediction
by showing that they represent clinically meaningful concepts. Lastly, we present
a system to display the units most relevant to a single inference.

Vertebral Fracture Detection We consider the threshold-based evaluation
metrics F1-score and accuracy, evaluated at the vertebra level. To remove the
dependence on a manually chosen threshold whose optimum might vary between
trained networks, the area under curve (AUC) and average precision (AP) met-
rics are also evaluated. We report the mean and standard deviation of these
metrics from five separate training trials for each model.

Training Testing F1 (%) Acc. (%) AUC (%) AP (%)
VerSe VerSe 71.2± 10.8 78.2± 12.0 84.5± 9.1 76.4± 14.5

VerSe, in-house VerSe 86.1± 2.6 90.9± 1.690.9± 1.690.9± 1.6 96.2± 0.996.2± 0.996.2± 0.9 94.1± 1.6

VerSe, in-house VerSe, in-house 88.0± 0.788.0± 0.788.0± 0.7 88.0± 0.4 94.7± 0.5 95.0± 0.495.0± 0.495.0± 0.4

Table 1. Performance of the trained neural networks on the test holdout of the smaller
VerSe dataset as well as the combined dataset, comprised of VerSe and non-public data
acquired from Hospital A and Hospital B. In total, the VerSe dataset contains 3,920
non-cervical vertebrae (254 of which are fractured), whereas the combined dataset
comprises 10,675 T1-L5 vertebrae (1,246 fractured).

For networks trained on the smaller VerSe dataset, we observe performance
akin to "naive" two-dimensional vertebral fracture detection approaches on the
same dataset [15], and a high dependence on a beneficial random seed. These
networks, however, do not yield detector units that exhibit any discerning pat-
terns. This is achieved by training a network with the larger dataset, combining
VerSe and in-house data collected at Hospital A and Hospital B, that is reliably
superior in performance. Its detector units exhibit a variety of patterns that are
investigated in the subsequent sections.

4.1 Clinical Meaningfulness of Extracted Semantic Concepts

Given the network trained on the larger dataset, we extract its semantic concepts
with Network Dissection [3], which we extended to the three-dimensional space.
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Rank Sample Activations Clinical Explanation

1 Abnormal endplate and in-
tervertebral disc shapes

2 Primarily defects of the in-
ferior endplate, associated
with severe fractures

5 Abnormal endplate shapes
with partial observation of
adjacent inferior vertebrae

7 Central defect of the supe-
rior endplate, commonly ob-
served in compression frac-
tures, with partial observa-
tion of adjacent inferior ver-
tebrae

8 Observation of the spongiosa
in the primary vertebrae as
well as the adjacent superior
one

9 Injury to the middle column
of the vertebral bodies, as-
sociated with clinically sig-
nificant myelon compression
and consecutive paresis

10 Abnormal endplate and in-
tervertebral disc shapes

Table 2. Visualization of the detector units most strongly correlated with a true
positive prediction along with an interpretation of their activations by clinical experts.
All displayed samples are fractured and represented by a slice with high activation
after thresholding.

To reduce the 512 detector units of the 3D U-Net to a tractable number, we
determine the top ten units highly correlated with a true positive prediction
as detailed in Section 2.2. For these units, we exported a single-slice collage of
25 strongly activating fractured samples serving as an overview of the units’
activations. For the five samples that activated the unit most strongly, all two-
dimensional slices as well as three-dimensional NIfTI files are exported, allowing
for a detailed inspection.

Based on these exports, we consulted two clinical experts with a combined
experience of 22 years in spine imaging about the clinical meaningfulness of these
detector units. Omitting three units where no immediate association was pos-
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sible, we show the detector units identified by their correlation rank with their
corresponding clinical explanation in Table 2. The provided samples show a di-
verse collection of detector unit activations, with each unit exhibiting consistent
patterns across multiple samples. We also observe that these units’ main focus
is the primary vertebra, even if there is some activation in the surroundings. It
is noteworthy that the patterns align with the bone anatomy and present them-
selves in clinically significant locations. As severe fractures are associated with
changes in the superior and inferior vertebral endplates, we find the majority of
activations in these regions. Although multiple detector units target these areas,
they focus on different locations and exhibit varying sizes of regions of interest,
with some integrating further information from the intervertebral discs as well as
the adjacent vertebra. These insights are clinically meaningful to detect moder-
ate and severe vertebral deformations (Genant grade 1 or higher [11]), and thus
show that our network learned concepts that have a clinical correspondence.

For the omitted cases, we observed either no statistically significant acti-
vations, i.e. Mk(xxx) = 000, or sporadic activations that do not present any clear
patterns, even though they are highly correlated with a true positive prediction.
Overall, such detector units represent a minority and can therefore be disre-
garded in light of those that exhibit tangible patterns.

4.2 Single-Inference Concept Visualization

Having shown that the network learns clinically relevant concepts, we have vali-
dated its ability to make use of conducive features. We further seek to illuminate
the black box decision-making process of the network by providing the user with
a visual explanation for a single inference. To this end, we propose a system
that visualizes the concepts considered most important by the network during
inference.

Using the method described in Section 2.3 to identify the units representing
the most relevant concepts, we retrieve their respective top activating images
from our combined dataset. We then display two visualizations for each unit:
(i) the activations of those units for the input sample, and (ii) the activations
for their corresponding top images. This provides the user with a detector unit’s
particular response for the given input sample as well as a larger context to
understand its general concept. For both visualizations, a single slice with high
activation (after thresholding) is shown. An example of (i) is given with Table 3,
which gives evidence of the network corroborating its prediction with a diverse
set of concepts. These concepts illustrate the network accurately identifying rel-
evant indications for the wedge-shaped deformity and incorporating information
from an adjacent vertebra.

This system enables users to comprehend the network’s decision making,
increasing trust in the system and allowing them to identify failure cases more
easily. Furthermore, this approach does not require any prior concept matching
by experts, as the user is able to interpret the general concept of a detector unit
and make informed judgements about its importance for a particular sample.



8 P. Engstler et al.

Unit 22 111 301 122 277 197

Relevance 1 2 3 4 5 . . . 10

Table 3. Visualization of the most relevant detector units during class prediction of
the sample shown on the left, which the network correctly predicted as fractured. Each
detector unit is represented by a single slice activation for that particular sample. We
also show its ranking in units highly correlated with a true positive prediction. We
observe that the network uses concepts associated with wedge-shaped deformity and
incorporates information from an adjacent vertebra

5 Conclusion

We show that a 3D U-Net learns a diverse set of concepts to tackle the task of
detecting vertebral fractures. To gauge their meaningfulness, we first proposed
a method to identify units highly correlated with a fracture detection. Then, we
showed the overlap of these units with clinical concepts as validated by experts.
Finally, we introduced a system to visually explain a single inference by showing
the concepts most relevant for the classification of the sample, giving users insight
into the network’s decision making process. Further extensions of this system are
conceivable, such as pre-filling a radiology report based on activations in a group
of semantically similar detector units.
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