Looking into Concept Explanation Methods for Diabetic Retinopathy Classification

Andrea M. Storås and Josefine V. Sundgaard

iMIMIC October 8, 2023

Looking into Concept Explanation Methods for Diabetic Retinopathy Classification

Andrea M. Storås and Josefine V. Sundgaard

iMIMIC October 8, 2023

This talk compares two concept explanation methods for deep learning-based diabetic retinopathy (DR) grading

Results and discussion

DR is graded from 0 to 4 based on findings in fundus images

No abnormalities

Level 1

Microaneurysms (MA) only

Level 2

More than MA, but less severe than level 3

Level 3

No signs of proliferative DR and either >20 intraretinal hemorrhages in each quadrant, definite venous beadings in 2+ quadrants or prominent intraretinal microvascular abnormalities

Level 4

Neovascularization and/or vitreous/preretinal hemorrhage

Wilkinson, C. et al. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales.

Doi: https://doi.org/10.1016/S0161-6420(03)00475-5

Deep learning can grade fundus images, but less work has been done on explaining the models

Hemorrhages

- User-defined concepts
- Adapt to use case
- Quantify the concept importance for the model
- Explain a group of images

- User-defined concepts
- Adapt to use case
- Quantify the concept importance for the model
- Explain a group of images

We compare two concept-based methods for explaining deep neural networks grading DR

Six concepts representing relevant medical findings for DR grading were defined

- Microaneurysms (MA)
- Hemorrhages (HE)
- Hard exudates (EX)
- Soft exudates (SE)
- Intraretinal microvascular abnormalities (IRMA)
- Neovascularization (NV)

1. Testing with Concept Activation Vectors (TCAV)

 ${\it Concept Activation Vectors (TCAV). \ URL: \ https://proceedings.mlr.press/v80/kim18d.html.}$

Koh, P.W. et al. (2020). Concept Bottleneck Models.

URL: https://proceedings.mlr.press/v119/koh20a.html.

Increasing severity

*: Insignificant concept

Results CBMs: Test time intervention on predicted concepts improve model accuracy

Results for DR grading: The CBMs do not generalize well to fundus images from external test datasets, probably due to limited training data

Model	No. of concepts	Accuracy	Balanced accuracy	F1 score	MCC	Precision
TCAV	-	81.2%	62.3%	0.612	0.615	0.613
CBM	4	71.9%	44.8%	0.429	0.416	0.454
CBM	6	24.8%	39.9%	0.257	0.095	0.318

Results for DR grading: The CBMs do not generalize well to fundus images from external test datasets, probably due to limited training data

Model	No. of concepts	Accuracy	Balanced accuracy	F1 score	MCC	Precision
TCAV	-	81.2%	62.3%	0.612	0.615	0.613
CBM	4	71.9%	44.8%	0.429	0.416	0.454
CBM	6	24.8%	39.9%	0.257	0.095	0.318

To conclude, concept explanations are promising for deep learning-based DR grading

CBMs allow for intervention at test time, but require datasets annotated with both concepts and target labels

TCAV provides the best trade-off between model performance and explainability for DR grading

Questions?

